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ABSTRACT 

 

This paper is concerned with the development of interactive systems for smart meeting rooms. 

Automated recognition of video events is an important research area.  We present an LTL 

(Linear Temporal Logic) model of basic objects and activities recognition in smart meeting 

rooms using object attribute details. There are still problems of misrecognizing objects in 

existing visual recognition methods because lack of enough feature attributive information 

details. This paper investigates morphological approach to increase recognition accuracy using 

variability in a limited area of moving object using object attribute details.  The proposed 

methods are also compared to popular and recent methods of visual object and event 

recognition. 
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1. INTRODUCTION 
 
This paper is concerned with design of automated interactive systems for smart meeting rooms. 

Design of automated visual recognition of video events is an important research area to support 

interactive systems in a very early stage of development. Events and behaviours can be modelled 

in the context of related visual recognized objects. Previous works [1][2][3] are still unable to 

visually localize speaker of the meeting rooms and need the help of audio features to identify the 

speaker. Other researchers [4][5][6] explained smart meeting rooms modelling but did not 

focused on visual events and behaviours which are important features of smart room systems. 

This paper aims to focus on visual events or behaviours in the smart meeting room systems 

including visual localization of the speaker. Research done by [1] uses predefined chair and 

speaker position. However, in the real situation without predefined scenarios, problems still occur 

in correctness of object identification due to various object position and illumination [7]. In 

addition to the face features, the speaker or the participants identification can also be done from 

other personal attributes such as clothes texture, ties, hair, headscarves, etc. Events and 

behaviours are also identified visually as the speaker entering the room or approaching the 

podium, talking, leaving the podium, etc. The participants’ interactivity through dialogue can also 

be identified visually. 
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The object detection using the popular HOG-SVM (Histogram of Oriented Gradients – Support 

Vector Machines) method still has problems of correctness due to various object position and 

illumination [7]. Human visual recognition algorithm has been developed and shows success only 

in controlled environment featuring face, iris, human action and behaviour [8][9]. Face detection 

algorithm has been developed and shows success in featuring facial landmarks such as corners of 

the eyes, the tip of the nose, the mouth, the eyebrows, and the face boundaries using regressing 

trees [10]. The work describes specific face landmarks in detail features or characteristics such as 

the eyes, eyebrows, nose, and mouth. However, the facial landmarks method is still not able to 

describe enough information of facial features compared to human perception capabilities of face 

recognition. There are still problems with human identification using face and body features 

while they are moving in pose variation [7]. Many statistical and machine learning methods need 

huge amount or training data taken from human perception or knowledge about objects [10], but 

it is still incomplete collected training data [11]. Besides statistical methods, syntactical methods 

include hierarchical, relational, structural, and morphological methods have been developed for 

face recognition [12][13][14][15]. Structural hierarchical and relational methods have been done 

for high level abstraction of image objects modelling, but still have problems for low level 

implementation [12][13]. Many researchers have developed various human activities and 

behaviour recognition, such as walking, sitting, bending, and some sport activities, and less work 

of person identification that does the activities [15]. 

 

Personal identification is not only using face, but also can use other personal attributes such as 

hair, hat, headscarves, body posture, or clothing. Personal attributes can be detected using HOG-

SVM, for example the textile textures in clothing. Khan [16] combines colour attributes and 

shapes and learned using HOG-SVM. Works by Nurhaida [17] use SIFT for static textile images, 

and less movement of the person wearing the textile. Work by Reddy [18] uses LBP and GLCM 

combined with KNN and SVM to extract features. Kalantidis [19] uses SIFT and LBP for 

clothing recognition in different appearances. 

 

In visual object detection, object features has also been investigated through SIFT, SURF, 

BRISK, BRIEF, FREAK, AKAZE, and ORB [20][21][22][23][24] which are based on corner 

detector as the best features. They work for simple objects with simple background but fails in 

more complex objects and complex background. The corner-based methods result in basically 

random match features which are far from correctness in matching object pairs, and need 

extended areas from the corner points, for example, using curves for describing shapes. The 

corner points only do not describe shapes and position of object features. 

 

The popular method HOG-SVM has high accuracy in describing face landmarks using thousands 

of mean-shapes from provided samples classified by regression tree using fit scores. This 

provides difference or tolerance values from the mean shapes [10] [25], and able to work with 

simple shapes / curves, but still have problem with sharp curves / non-simple curves. LBP method 

[8] can be applied in different size of pixels because of histogram size normalization. However, 

LBP and HOG-SVM cannot be applied in small size of pixels describing small features. They 

require more or less similar size of pixels and make distribution of grey level without maintaining 

the pixel positions. GLCM [18] requires too specific and overfitting pattern with lack of 

generalization or tolerance due to object position and pose changes. HOG SVM in [10] [25] with 

high accuracy still has ambiguity results which can be eliminated using additional pixels 

information processing using pixel grey level curve distance evaluation such as Manhattan 

distance. Problem with illumination are solved using HOG-SVM, but more precise result 

revalidated using grey level pixel values. Solving ambiguity in HOG-SVM method basically give 

primal guidance that all objects can be detected using provided samples by their appearances. 

 

Related objects can elaborate more complex problem in scene understanding in wider context of 

objects, for example in recognition of events, activities or behaviours of moving human objects, 
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such as human activities or behaviours. In this paper we use lecture and conference activities in a 

smart meeting room as a study case of events recognition. Images processed from videos which 

are sampled from courtesy of Youtube [26][27]. 

 

2. MODELLING BASIC OBJECTS AND ACTIVITIES OF SMART MEETING 

ROOM 

 
Personal visual recognition performance using face and body postures can decrease because of 

movement in different poses [7]. To better recognized and discriminate personal face and body 

characteristics, we can use attributes of the human object such as the eyes, nose, mouth, hair, 

headscarf, hat, ties, fabric cloth texture, etc. [28][29][30][31][32][33]. After personal recognition, 

related events should be recognized in videos by tracking consecutive events or activities. For 

events or activities recognition, formal models are used for reasoning. In paper by [34] video 

events are modelled using Petri nets and formalized using LTL (Linear Temporal Logic) formulas 

to provide guidance for programming implementation. 

 

Basic activities that can be recognized visually in lecture / conference activities in the meeting 

room include the speaker identification using attributes details, different attributes of the 

participants, the speaker and the participant activities, layout of display, podium, tables and chairs 

related to speaker and participants position. This paper focuses on visual recognition without 

neither predefined position of the camera nor the speaker. Room layouts such as round tables 

arrangements as recognized objects are included in the model, for example it is useful for 

controlling dynamic movement of cameras or microphones in smart rooms. The speaker 

recognition is the central of the system, and recognized not only from the face, but also from 

detail attributes and behaviours. In this paper we focus on detail attributes, behaviours of the 

speaker and the participants of the conference, and the room layouts. For example, we use semi 

round tables layout as depicted in Figure 1, and we model the semi round tables layout in LTL 

formulae as follows. 

 

Figure 1.  An example of semi round tables arrangement 

GFs      (1) 

 

s⊨ ���⋀���⋀��� … ⋀����    (2) 

 

where 

 

s  = satisfied condition of semi round tables arrangement 

a1 = the first position of detected person / chair facing right 

a2 = the second position detected person / chair facing right 

a3 = the third position detected person / chair facing right 

a4 = the fourth position of detected person / chair facing left 

a5 = the fifth position detected person / chair facing left 
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a6 = the sixth position detected person / chair facing left 

a7 = the first position of detected person / chair facing table 

a8 = the second position of detected person / chair facing table 

a9 = the third position of detected person / chair facing table 

a10 = the fourth position of detected person / chair facing table 

a11 = the fifth position detected person / chair facing table 

a12 = the sixth position detected person / chair facing table 

b1= b2 = b3 = b4 = four small tables 

or replaced by b5= one big table. 

 

a4 ⊨(�a41⋀�a42⋀�a43) ⋁(�a44⋀ �a45⋀ �a46)      (3) 
 

where 

 

a41 = x-coordinate left position of the person / chair a1< x-coordinate left position of the table b1 

a42 = y-coordinate top position of the person / chair a1≥ y-coordinate top position of the table b1 

a43 = y-coordinate bottom position of the person / chair a1≤ y-coordinate bottom position of the 

table b2  

a44 = x-coordinate left position of the person / chair a1< x-coordinate left position of the table b5 

a45 = y-coordinate top position of the person / chair a1≥ y-coordinate top position of the table b5 

a46 = y-coordinate bottom position of the person / chair a1≤ y-coordinate bottom position of the 

table b5 

 

We define an example of a speaker through talking activity and tie attribute as follows. 

  � = count(talk) ≥ϵ     (4) 

  ¬ � = count(talk) <ϵ     (5) 

  Ψ = (Gt⋀ (�R d))     (6) 

where t  =  the person is wearing a tie and d  =  counting mouth movement (talking) as described 
in Figure 2. �is a condition when the counting d exceeds a number ϵ which is an assumption of a 
number of mouth detected opening which is also based on position differences between detected 
upper and lower lips from theprevious frame-to-frame movement, and also based on counting of 
the second order differences of the position differences between the detected upper and lower lips 
as a representation of talking mouth movement. In equation (7) and Figure 3, we also define an 
example of an interactive participant which does not have a speaker attributes, probably raises 
hand and stands up for question talks. 
 
 G¬ψ⋀ Fh ⋀X((Fc)⋁(�R d) )    (7) 

where 

 
¬ψ = that person is not a speaker (maybe a participant) 
c= the person is standing up (probably eventually)  
d = counting mouth movement (talking) 
� = count(talk) ≥ϵ1 
h= the person raise hand 

 



Computer Science & Information Technology (CS & IT)                                   67 

 

 

Figure 2. LTL diagram of talking counting and tie attribute 

 
 

Figure 3.  LTL diagram of participant interactivity 

 

In Figure 4, we define an example of a speaker detected with tie attribute and talking activities. 

We also define other general personal detail attributes such as hair, hat, headscarf, and clothing 

textile patterns.  

 
 

Figure 4. Petri nets diagram of personal detail detection 

 
In Figure 5, we define a scenario of a person movement towards a detected podium, being near 

podium, talks, and then move away after finish talking. Figure 6 and Figure 7 describe in further 

details about a person movement detected from position coordinate changes and being near 

podium coordinates, and eventually detected as a speaker. 
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Figure 5. Petri nets diagram of speaker scenario 

 

 

Figure 6. Petri nets diagram of moving speaker 

 

Figure 8 also describes a speaker detected from collected score of checking detected tie, being 

near podium coordinates, and talking activities from detected lips moving coordinates. 

 

Figure 7. Petri nets diagram of speaker near podium 
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Figure 8. Petri nets diagram of defining speaker properties 

 

3. DETAIL ATTRIBUTE DETECTION USING GRADIENTS 

We use an alternative of human recognition to recognize hair texture on moving person in the 

smart meeting room. In case of small size of the object region of interest (ROI), for example for 

far objects from camera which implies smaller size of ROIs, we cannot use HOG-SVM due to 

size of small size area. We cannot also use LBP due to value similarities which are not able to 

distinguish true and false features. We use Multiple Linear Regression formulas in [31] to 

describe feature of objects. Examples for identification of the speaker’s white hair texture 

distinguished from the audience’s brown hair with guidance of face landmark position are shown 

in Figure 9 and Figure 10. With position guidance of face landmarks and HOG-SVM object 

learning [25][35] detection area, we pick hair texture samples from one frame in video and 

compare them to the other frames. We formulate the pixel grey level value differences below, and 

then calculate a mean value between � and �. 

 <3C |�| < 4C , � = ����|��� = �� − ����	 ∩	��� < 0�   (8) 

<5C |�| < 6C , � = ����|��� = �� − ����	 ∩	��� > 0�  (9) 

The step in � and � sets are getting the optimum number of pixel points in certain ranges which 

have negative (or positive) gradients ���with their successor points in the curve of pixel gray 

levels.  

In Table I we use the formulas to describe similarity between sample and tested object features in 

moving person. We use three ROIs to enable variability of feature areas in moving object, but still 

in guidance of face landmarks. For example, experiment 1 ROI 2 shows a minimum mean value 

of pixel gradients � and � values, and all other experiments in Table I also shows a minimum 

value at least on an ROI, which is an expected result of the mean formula. In the other side, 

Manhattan distance calculation fails to show consistent behavior while giving lower value in false 

features in Table II experiment 4 ROI 1 and higher value in true features in Table I experiment 5 

ROI 2. In correct location area, the distance values are expected to be consistently lower in true 

features and higher in false features. The true and false features are then validated by human eyes, 

and the mean formula is expected to show consistent expected results. 
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Table 1.  Distance measurement comparison examples for true features. 

Experiment ROI Mean Manhattan 

1 

1 38 2454 

2 5 1301 

3 7 4082 

2 

1 38 2454 

2 7 1340 

3 3 4092 

3 

1 13 2688 

2 11 4506 

3 6 4520 

4 

1 5 2932 

2 10 4412 

3 2 4614 

5 

1 81 41662 

2 6 36304 

3 41 17976 

6 

1 73 41640 

2 17 33918 

3 72 21699 

 

Table 2.  Distance measurement comparison examples for false features. 

Experiment ROI Mean Manhattan 

1 

1 105 45000 

2 100 46247 

3 85 45045 

2 

1 105 45027 

2 98 46287 

3 92 45432 

3 

1 106 45423 

2 104 46321 

3 101 44936 

4 

1 78 15647 

2 23 29486 

3 40 33221 

5 

1 82 16664 

2 22 29313 

3 33 32859 

6 

1 242 66257 

2 118 121455 

3 138 158312 

 

 
 

Figure 9. Speaker white hair texture feature, picture is courtesy of Youtube [26] 
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Figure 10. Audience hair texture feature, picture is courtesy of Youtube [26] 

 

4. RESULTS AND DISCUSSIONS 
 
In Table 1 and Table 2, we use mean measurement formula (8) and (9) to clearly distinct true 

features from false features. Table 1 show mean values on each ROI for each experiment, and for 

each experiment there exist minimum mean values which are less than 20 for true features and 

more than 20 for false feature. The minimum mean values occur on at least one of the ROIs of 

each experiment of true features. In the other side, Manhattan distance measurement cannot 

distinguish clearly between true and false features. 

 

Choices of segmentation methods and ROI areas are important for defining detail features of 

object detection. ROI area variability can be extended with guidance of other relatively more 

reliable features such as face landmarks. There are also possibilities of combining criteria with 

other attributes such as a person wearing ties. Another challenge is noisy background of the 

objects. The detection methods can be combined with other features such as colour, but colour 

attribute is not always useful in outdoor sunny daylight environment which may affect brighter 

object colour. 

 

Basic objects and activities in smart meeting room are also as the results of objects and activities 

detection using the LTL formulas and petri nets implementation. Figure 11 shows speaker 

detection through tie attributes, mouth movement counting, and white hair property in ROIs. In 

this figure, the mean formula shows white hair property similarity as the lowest value 3 in the 

bottom ROI position, when Manhattan formula shows inconsistently higher value 4449 compared 

to 2630 and 1381, also when LBP formula shows indistinctive all zero values in all the ROIs.  

Figure 12 shows an audience with no tie attributes, and no white hair property since the lowest 

mean value is 10 which is higher than 3 as the value of white hair property, when Manhattan 

formula also shows inconsistently higher value compared to other ROIs, and LBP formula shows 

errors. Figure 13 shows moving person detected, and speaker detected from clothing pattern in 

the middle ROIs which has the lowest mean value, but LBP formula shows inconsistent higher 

value in the middle ROI. Finally, in Figure 14 LTL formulas can determine a speaker movement 

and positioned near podium which is also previously detected by HOG-SVM object detection. 

Figure 14 also shows the lowest mean value in the bottom ROI, when LBP shows inconsistent 

higher value in the bottom ROI. Figure 15 is demonstrated by Yolo [36] object detection with 

correct position of a person, chairs, and a table, but it still misrecognizes a working desk as a 

dining table. Figure 15 also shows indistinctive similar LBP values for all three ROIs, when the 

mean value shows the lowest value in the bottom ROI for clothing pattern similarity. The mean 

formula can distinct object properties in some cases better than HOG and LBP because it 

maintains the pixel positions rather than distribution of pixel values, also the mean formula works 

better than HOG and LBP on small size of picture patches as the object properties. 
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Figure 11. Speaker detected from tie attributes, mouth movement counting, and white hair property in one 

of the three ROIs, picture is courtesy of Youtube [26] 

 

 

 
 

Figure 12. Participant detected from no tie attribute, mouth movement counting, and no white hair property 

in one of the three ROIs, picture is courtesy of Youtube [26] 

 

 

 
 

Figure 13. Moving person detected, and speaker detected from clothing pattern in one of the three ROIs, 

picture is courtesy of Youtube [26] 
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Figure 14. Moving speaker detected near podium, and speaker detected from clothing pattern in one of the 

three ROIs, picture is courtesy of Youtube [27] 

 
 

Figure 15. Person, table and chair detected positions using Yolo [36], and a person detected from clothing 

pattern in one of the three ROIs 

5. CONCLUSIONS 
 
This paper has shown a LTL model and its implementation on visual objects and activities 

recognition in smart meeting rooms. We have also shown that optimum number of pixel points in 

certain ranges which have negative (or positive) gradients of grey level pixel values can be used 

to distinct features to increase attribute detail recognition. There are still challenges to distinct 

more features to increase accuracy of moving object and event recognition. Another possibility is 

using variability of the gradient sequence. 
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