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ABSTRACT 

 

Since 1991, tries were made to enhance the stochastic local search techniques (SLS). Some 

researchers turned their focus on studying the structure of the propositional satisfiability 

problems (SAT) to better understand their complexity in order to come up with better 

algorithms. Other researchers focused in investigating new ways to develop heuristics that alter 

the search space based on some information gathered prior to or during the search process. 

Thus, many heuristics, enhancements and developments were introduced to improve SLS 

techniques performance during the last three decades. As a result a group of heuristics were 

introduced namely Dynamic Local Search (DLS) that could outperform the systematic search 

techniques. Interestingly, a common characteristic of DLS heuristics is that they all depend on 

the use of weights during searching for satisfiable formulas. 

 

In our study we experimentally investigated the weights behaviors and movements during 

searching for satisfiability using DLS techniques, for simplicity, DDFW DLS heuristic is chosen. 

As a results of our studies we discovered that while solving hard SAT problems such as blocks 

world and graph coloring problems, weights stagnation occur in many areas within the search 

space. We conclude that weights stagnation occurrence is highly related to the level of the 

problem density, complexity and connectivity. 

 

1. INTRODUCTION 

 
The propositional satisfiability (SAT) problem is at the core of many computer science and 

artificial intelligence problems. Hence, finding efficient solutions for SAT has far reaching 

implications. In this study, we consider propositional formulae in conjunctive normal form 

 in which each  is a literal (propositional variable or its negation), and 

each disjunct  is a clause. The problem is to find an assignment that satisfies . Given that 

SAT is NP complete, systematic search methods can only solve problems of limited size. On the 

other hand, relatively simple stochastic local search (SLS) methods have proved successful on a 

wide range of larger and more challenging problems [10]. Furthermore, stochastic local search 

(SLS) techniques are proven to be effective in solving hard satisfiability boolean problems. 

 

However, their performance is still arguably poor when compared to systematic search 

techniques. Therefore, and since the development of the first clause weighting dynamic local 

search (DLS) algorithms for SAT, namely he Breakout heuristic [16], tries were made to enhance 

the local search techniques in many different ways. Some researchers turned their focus on 

studying the structure of the satisfiability problems (as in 1.1) to better understand the complexity 
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of it and to come up with algorithms that could solve the problems in an optimal way. Other 

researchers focused on investigating new heuristics that alter the search space based on some 

information gathered during searching for a solution (as in 1.2). Thus, many heuristics, 

enhancements and developments were introduced to improve SLS techniques performance in the 

last three decades. As a result, a group of heuristics were introduced that could outperformed the 

systematic search techniques, namely Dynamic Local Search (DLS). Recent DLS algorithms 

depend on the use of weights to alter the search space. In other words, weights are used when 

there are no moves that could decrease the search cost, to make it possible for the technique to 

take unattractive moves which could increase the search cost temporarily. 

 

1.1 Propositional satisfiability (SAT) complexity and hardness 
 

It is proven that hard combinatorial SAT problems are the benchmarks that are used to test the 

efficiency, accuracy and optimality of a given algorithm [12]. As easy problems could be solved 

by any algorithm in a reasonable manner [21], which in turn does not reflect the real performance 

of a solving techniques. Therefore, studies since almost three decades focused on studying the 

hardness, complexity, and density of a countless number of SAT problems [6, 8, 15, 9]. Thus, a 

large distribution of hard problems was produced. These hard problems are categorized into two 

main divisions: 1) satisfiable and 2) un-satisfiable instances. Furthermore, in The International 

SAT solver competition (http"//www.satcompetition.org/ ) there are three sub divisions of the 

two main divisions: a) Industrial, b) Crafted, and c) Random instances. In another field of studies, 

researchers not only investigated whether a problem is satisfiable or not, they also studied how 

hard a problem is, as in [17, 21, 1]. 

 

1.2 Propositional satisfiability (SAT) dynamic solving techniques 
 

Since the development of the Breakout heuristic [16], clause weighting dynamic local search 

(DLS) algorithms for SAT have been intensively investigated, and continually improved [5, 7]. 

However, the performance of these algorithms remained inferior to their non-weighting 

counterparts (e.g. [13]), until the more recent development of weight smoothing heuristics [24, 

19, 11, 23]). Such algorithms now represent the state-of-the-art for stochastic local search (SLS) 

methods on SAT problems. Interestingly, the most successful DLS algorithms (i.e. DLM [24], 

SAPS [11], PAWS [23]), EWS [4], COVER [18] and recently CScore-SAT [3]) have converged 

on the same underlying weighting strategy: increasing weights on false clauses in a local 

minimum, then periodically reducing weights according to a problem specific parameter setting. 

Except for COVER which updates the edge weights in every step of the search. 

 

However, a key issue with DLS algorithms is that their performance depend mainly on the 

efficiency of modifying the weights during the search, regardless of some other factors which 

may play a crucial role in their performance when applied for solving large and hard SAT 

problems such as Blocks World and Graph Coloring problems. For Instance, the size of 

backbones [22]
1
, the phase transition occurrence, and the density of a given problem. 

 

Our study focuses on another factor and investigate its impact on the performance of DLS solving 

techniques. The question addressed in the current paper is that what happens to the weights when 

a clause and its neighboring clauses are satisfied?. For instance, if clause ci is connected to n 

number of clauses (neighboring area of clause ci, as discussed in sub-section 2.2) and by 
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assuming that clause ci became satisfied, by flipping one of its literals lim, where all its 

neighboring clauses are satisfied too, should clause ci and its neighbors keep the weights?. 

 

In the remainder of the paper we generally discuss the clause weighting most known algorithms 

such as SAPS, PAWS and DLM and DDFW. Then we discuss elaborately on DDFW technique 

as it is used for the purpose of the current study. Then, we show empirically the weights 

behaviors and movements during the search via an intensive experimentation on a broad range of 

benchmark SAT problems. Then we analyze the results and show the general outcome of the 

experiments. Finally, we conclude our work and some guidelines for future work are given. 

 

2. CLAUSE WEIGHTING FOR SAT 
 

Clause weighting local search algorithms for SAT follow the basic procedure of repeatedly 

flipping single literals that produce the greatest reduction in the sum of false clause weights. 

Typically, all literals are randomly initialized, and all clauses are given a fixed initial weight. The 

search then continues until no further cost reduction is possible, at which point the weight on all 

unsatisfied clauses is increased, and the search is resumed, punctuated with periodic weight 

reductions. 

 

Existing clause weighting algorithms differ primarily in the schemes used to control the clause 

weights, and in the definition of the points where weight should be adjusted. Multiplicative 

methods, such as SAPS, generally adjust weights when no further improving moves are available 

in the local neighborhood. This can be when all possible flips lead to a worse cost, or when no 

flip will improve cost, but some flips will lead to equal cost solutions. As multiplicative real-

valued weights have much finer granularity, the presence of equal cost flips is much more 

unlikely than for an additive approach (such as DLM or PAWS), where weight is adjusted in 

integer units. This means that additive approaches frequently have the choice between adjusting 

weight when no improving move is available, or taking an equal cost (flat) move. 

 

Despite these differences, the three most well-known clause weighting algorithms (DLM [24], 

SAPS [11] and PAWS [23]) share a similar structure in the way that weights are updated:2 

Firstly, a point is reached where no further improvement in cost appears likely. The precise 

definition of this point depends on the algorithm, with DLM expending the greatest effort in 

searching plateau areas of equal cost moves, and SAPS expending the least by only accepting 

cost improving moves. Then all three methods converge on increasing weights on the currently 

false clauses (DLM and PAWS by adding one to each clause and SAPS by multiplying the clause 

weight by a problem specific parameter  α > 1). Each method continues this cycle of searching 

and increasing weight, until, after a certain number of weight increases, clause weights are 

reduced (DLM and PAWS by subtracting one from all clauses with weight > 1 and SAPS by 

multiplying all clause weights by a problem specific parameter ρ< 1). SAPS is further 

distinguished by reducing weights probabilistically (according to a parameter Psmooth), whereas 

DLM and PAWS reduce weights after a fixed number of increases (again controlled by 

parameter). PAWS is mainly distinguished from DLM in being less likely to take equal cost or  

flat moves. DLM will take up to θ1 consecutive flat moves, unless all available flat moves have 

______________ 
1
back in 2001, Slaney et. al. [22] studied the impact of backbones in optimization and approximation problems. 

He concluded that in some optimization problems, backbones are correlated with the problem hardness. He also 

suggested that heuristic methods when used to identify backbones may reduce problem difficulty. 
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already been used in the last θ2  moves. PAWS does away with these parameters, taking flat 

moves with a fixed probability of 15%, otherwise it will increase weight. 

 

2.1 Divide and Distribute Fixed Weights 

 
DDFW introduces two ideas into the area of clause weighting algorithms for SAT. Firstly, it 

evenly distributes a fixed quantity of weight across all clauses at the start of the search, and then 

escapes local minima by transferring weight from satisfied to unsatisfied clauses. The other 

existing state-of-the-art clause weighting algorithms have all divided the weighting process into 

two distinct steps: i) increasing weights on false clauses in local minima and ii) decreasing or 

normalizing weights on all clauses after a series of increases, so that weight growth does not 

spiral out of control. DDFW combines this process into a single step of weight transfer, thereby 

dispensing with the need to decide when to reduce or normalize weight. In this respect, DDFW is 

similar to the predecessors of SAPS (SDF [19] and ESG [20]), which both adjust and normalize 

the weight distribution in each local minimum. Because these methods adjust weight across all 

clauses, they are considerably less efficient than SAPS, which normalizes weight after visiting a 

series of local minima.3DDFW escapes the inefficiencies of SDF and ESG by only transferring 

weights between pairs of clauses, rather than normalizing weight on all clauses. This transfer 

involves selecting a single satisfied clause for each currently unsatisfied clause in a local 

minimum, reducing the weight on the satisfied clause by an integer amount and adding that 

amount to the weight on the unsatisfied clause. Hence DDFW retains the additive (integer) 

weighting approach of DLM and PAWS, and combines this with an efficient method of weight 

redistribution, i.e. one that keeps all weight reasonably normalized without repeatedly adjusting 

weights on all clauses. 

 
________ 
2
Additionally, a fourth clause weighting algorithm, GLSSAT [14], uses a similar weight update scheme, 

additively increasing weights on the least weighted unsatisfied clauses and multiplicatively reducing 

weights whenever the weight on any one clause exceeds a predefined threshold. 
3
Increasing weight on false clauses in a local minimum is efficient because only a small proportion of the 

total clauses will be false at any one time. 
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DDFW's weight transfer approach also bears similarities to the operations research sub-gradient 

optimization techniques discussed in [20]. In these approaches, Lagrangian multipliers, analogous 

to the clause weights used in SAT, are associated with problem constraints, and are adjusted in 

local minima so that multipliers on unsatisfied constraints are increased and multipliers on 

satisfied constraints are reduced. This symmetrical treatment of satisfied and unsatisfied 

constraints is mirrored in DDFW, but not in the other SAT clause weighting approaches (which 

increase weights and then adjust). However, DDFW differs from sub-gradient optimization in 

that weight is only transferred between pairs of clauses and not across the board, meaning less 

computation is required. 

 

2.2 Exploiting Neighborhood Structure 
 

Second and more original idea developed in DDFW, is the exploitation of neighborhood 

relationships between clauses when deciding which pairs of clauses will exchange weight. 

 

We term clause ci to be a neighbor of clause cj, if there exists at least one literal lim ϵ ci  and a 

second literal ljn ϵ cj such that lim =  ljn as in Fig 1. Furthermore, we term ci to be a same sign 

neighbor of cj if the sign of any lim ϵ ci  is equal to the sign of any ljn ϵ cj  where lim =  ljn. From this it 

follows that each literal lim ϵ ci  will have a set of same sign neighboring clauses . Now, if ci 

is false, this implies all literals lim ϵ ci  evaluate to false. Hence flipping any lim  will cause it to 

become true in ci,  and also to become true in all the same sign neighboring clauses of lim,  i.e. it 

will increase the number of true literals, thereby increasing the overall level of satisfaction for 

those clauses. Conversely, lim  has a corresponding set of opposite sign clauses that would be 

damaged when lim  is flipped. 

 

The reasoning behind the DDFW neighborhood weighting heuristic proceeds as follows: if a 

clause ci is false in a local minimum, it needs extra weight in order to encourage the search to 

satisfy it. If we are to pick a neighboring clause cj  that will donate weight to ci, we should pick 

the clause that is most able to pay. Hence, the clause should firstly already be satisfied. Secondly, 

it should be a same sign neighbor of ci, as when ci is eventually satisfied by flipping lim, this will 

also raise the level of satisfaction of lim's same sign neighbors. However, taking weight from cj 

only increases the chance that cj will be helped when ci is satisfied, i.e. not all literals in ci are 

necessarily  shared  as  same  sign  literals  in  cj ,  and  a  non-shared  literal may be subsequently  

flipped to satisfy ci. The third criteria is that the donating clause should also have the largest store 

of weight within the set of satisfied same sign neighbors of ci. 

 

The intuition behind the DDFW heuristic is that clauses that share same sign literals should form 

alliances, because a flip that benefits one of these clauses will always benefit some other 

member(s) of the group. Hence, clauses that are connected in this way will form groups that tend 

towards keeping each other satisfied. However, these groups are not closed, as each clause will 

have clauses within its own group that are connected by other literals to other groups. Weight is 

therefore able to move between groups as necessary, rather than being uniformly smoothed (as in 

existing methods). 
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3. EXPERIMENTAL EVALUATION AND ANALYSIS 

 

 
 

Table 1. structural information about some of the the original DIMACS 2005 problem sets. the problem 

were carefully selected taking to consideration their size, density, and connectivity. 

 

As we stressed in section 2.1 and section 2.2, DDFW can exploit the neighboring structure of a 

given clause ci and identify the weight alliances of ci. These weight alliances act as the source of 

weights donors when a clause within the alliance need more weights. Also, they stabilize the 

process of weight transfer as they can lead to keeping weights within each allies as long as no 

weight transfer is needed, thus all the clauses within the neighborhood are satisfied. However, 

this has further implications as it could lead the search to get into one of the following scenarios 

that we discovered while investigating the weight transfer process: i) weights within a 

neighborhood (Allie) could not be transferred to another sub area of the search space. ii) weights 

of a specific neighborhood may keep circulating within their neighborhood. iii) if the level of 

connectivity between any two neighboring allies is low, weight transfer may suffer from 

stagnation, hence it can make the search process longer than it suppose to be. 

 

In order to show the above three scenarios and their impact on the search process of any given 

DLM technique, we first studied the general structure of some benchmark problems. Table 1 

illustrates the structure of the benchmark problems that were carefully selected based on their 
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size, complexity and hardness. We attempted to reproduce a problem set similar to that used in 

the random category of the SAT competition (as this is the domain where local search techniques 

have dominated). To do this we selected the 50 satisfiable k3 problems from the SAT2004 

competition benchmark. Secondly, we obtained the 10 SATLIB quasi-group existence problems 

used in [2]. These problems are relevant because they exhibit a balance between randomness and 

structure. Finally, we obtained the structured problem set used to originally evaluate SAPS [11]. 

These problems have been widely used to evaluate clause weighting algorithms (e.g. in [23]) and 

contain a representative cross-section taken from the DIMACS and SATLIB libraries. In this set 

we also included 4 of the well-known DIMACS 16-bit parity learning problems. 

 

For each selected problem we firstly show the number of atoms (variables) of the problem, the 

number of the clauses of the problem and the number of literals. Secondly, we show the 

minimum and the maximum number of literals that form a clause within the problem structure. 

Finally, we show the number of minimum sized clauses as will as the number of maximum sized 

clauses. We designed our experiment to be as follows: 

 

� for each problem we ran DDFW 1000 run. Each run time out was set to 10,000,000 flips. 

 

� in each run, we recorded the change of weights in every 10,000 flips. 

 

� in every local minimum, we recorded whether DDFW heuristic selected a neighboring 

satisfied clause from the weight allie of the false clause, or it picked a satisfied clause, to 

be weight donor, randomly from outside the neighboring area of the false clause. 

 

� plots were made for each problem to illustrates the change of weights of the false clauses 

from the starting point of the search process until the solution is found or it reaches a 

time out. This is done for all the figures included in the paper. 

 

Table 2 show the detailed results of the runs. For each problem we firstly show the success rate 

(which reflect the percentage of whether a solution is found or not). Then we show the total 

number of local minima that DDFW heuristics found before reaching a global optima. Then we 

show the number of times the DDFW heuristic randomly picked a clause as a weight donor. Next 

we show the number of times that DDFW heuristic picked a neighboring satisfied clause as a 

weight donor from the false clause allies. Finally we show the the average number of times 

DDFW heuristic deterministically picked a clause as a weight donor. 

 

In order to show the weights transfer and movements during the search we plotted the false 

clauses and their weights changes and the number of neighboring clauses of each false clause. 

This to show the relationship between the change of weights and the number of neighboring 

clauses of a false clause. Out of all problem sets we discuss four problems as they are of great 

importance to this work, namely, the Uniform Random 3SAT, the Parity problem, the Blocks 

World and the Graph Coloring problem because they explicitly show the previously mentioned 

three scenarios. These four problem sets are of different sizes and level of hardness. The Uniform 

Random 3SAT (uf100 and uf250) is the smallest set that has 100 variables and 430 clauses, 

where the Uniform Random 3SAT 250 has 250 variables and 1065 clauses. Fig 2 show the results 

for both problems. We can see that both problems were easy to solve. Also, the weight movement 

was smooth as their was enough neighboring clauses to donate weights to a false clause and more 

importantly when a sub area become satisfied, the connectivity between clauses allow the transfer 
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of weights easily (no weight stagnations occur). This is also true with the second problem, The 

Parity problem even that the level of hardness of the Parity 16 and the Parity 32 is higher than the 

Uniform Random 3SAT, as in Fig 3. What was experimentally interesting is the Graph Coloring 

problem (both the g125.17 and the g125.18 problems as in Fig 4, where g125.17 has 2125 

variables 66272 clauses and the g125.18 has 2250 variables and 70163 clauses ) where firstly, 

DDFW could not reach 100% success rate on the g125.17. Secondly, the figure show a clear gap 

between the movement of the weights. Which means the occurrence of weights stagnation. Thus, 

the connectivity between the clauses is either very low which make transferring weights among 

the clauses is limited to the clauses that are directly connected, or the connectivity of the clauses 

is very high which means a larger number of neighbors that could keep the weights for longer 

time and prevent other false clauses some where else in the search space from using them. Finally 

the Blocks World, Fig 5, which has 6325 variables and 131973 clauses., which has a similar 

weight transfer behaviors as the parity problem and the uniform random 3SAT problem with the 

exception of the level of hardness as the block world problem was harder to solve and the weights 

were moving more often during the search space. 

 

 
 

Table 2. The table show the number of successful tries made by DDFW, the number of local minima faced 

the search, the number of random weights distribution during the search, the number of deterministic 

weight distribution and the average number of deterministc weight distribution. Weights behaviors and 

movements during the search. 
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Fig. 2. false clauses and their weights during the search, the uf100 problem top and the uf250 bottom 

 

 
Fig. 3. false clauses and their weights during the search, the par16 top and par32 bottom 

 

 



88  Computer Science & Information Technology (CS & IT) 

 

 
Fig. 4. false clauses and their weights during the search, the g125-17 top and the g125-18 bottom 

 

 
Fig. 5. false clauses and their weights during the search, the bw-d.large 

 

4. CONCLUSION 

 
As a conclusion, DLS weighting techniques performance could suffer from weight stagnation that 

leads to the slowness of a chosen techniques. Our experiments show that these weight stagnations 

are not general to all problems but rather they are a problem specific characteristic. We have 

looked into each problem characteristic such as its hardness, complexity, and density. As a result, 

each problem characteristics may contribute to the occurrence of weight stagnations in some 

stages during the search. The DDFW algorithm is a relatively simple application of neighborhood 

weighting, and further experiments (not reported here) indicate more complex heuristics can be 

more effective on individual problems. In particular, we have looked at adjusting the amount of 

weight that is redistributed and allowing DDFW to randomly pick donor clauses according to a 

noise parameter. However, we have yet to discover a general neighborhood heuristic as effective 
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as DDFW over the range of problems considered. In future work we consider it will be promising 

to extend a DDFW-like approach to handle weight stagnations via adjusting weights in stagnated 

alliances regardless of whether they are satisfied or not. This could be done by improving the 

exploitation of neighboring areas. 
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