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ABSTRACT 

Software reverse engineering is an active threat against software programs. One of the popular 

techniques used to make software reverse engineering harder is obfuscation. Among various 

control flow obfuscations methods proposed in the last decade there is a lack of inter-functional 

control flow obfuscation techniques. In this paper we propose an inter-functional control flow 

obfuscation by manipulating return instructions. In our proposed method each function is split 

into different units, with each unit ending with a return instruction. The linear order in which 

functions appear in the program is obscured by shuffling these units there by creating an inter-

functional control flow obfuscation. Experimental results show that the algorithm performs well 

against automated reverse engineering attacks. 
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1. INTRODUCTION 

 
To develop high quality software, engineers use various software analysing tools to detect 

vulnerabilities and loopholes in the program thereby facilitating them with an environment to 

improve their software. However, software analysing tools are double-edged swords that can be 

used to reverse engineer the software for malicious intents like intellectual property theft or 

finding vulnerabilities to exploit. Tools and books on reverse engineering are readily available for 

download on various Internet websites [1, 2]. 

 

A major factor that makes it harder to prevent software reverse engineering is that the attacker is a 

user and has all the power of a user to control the software and its running environment. One of 

the ways to provide some security to the distributed program is to incorporate a security 

mechanism embedded within the program. Software obfuscation is one such effective mechanism 

that hinders the process of software reverse engineering. Obfuscation is the process of translating 

a software into a semantically equivalent obscure form, so that it is harder to understand the logic 

of the program. Obfuscation can be applied to an entire program or partly to a section of the 

program, like watermarked code [4]. Low performance overhead compared to other techniques 

like encryption, is one of the desirable properties of obfuscation [5] 

 

Software obfuscation can be applied to a program at different stages of its compilation. Source 

code obfuscation refers to the application of obfuscation on the source code of the program [6-8]. 

Similarly binary level obfuscation refers to applying obfuscation algorithms on compiled binary 
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programs [10]. Obfuscation can be applied on various intermediate levels such as on bytecode 

representation in the case of Android applications [19] or Java programs.   

 

Most of the modern reverse engineering tools, like IDAPro [1], are capable of constructing the 

control flow graph of a program by converting a binary program to its equivalent assembly 

representation.  

 

A control flow graph shows the basic block [16] of instructions as vertices and the possible 

control flow directions as edges, which enables an attacker to follow the program logic and find 

possible points to attack. Thwarting the disassembly process, by not allowing the reverse 

engineering tools to determine the correct program representation will result in an erroneous 

assembly program generation, thereby making program analysis harder. This is the basic idea of 

most of the binary obfuscation algorithms.  In the past years, many binary obfuscation algorithms 

have been designed to fool the reverse engineering tools. Signal based obfuscation [11], control 

flow flattening [18], self-modification based obfuscation [14], double process obfuscation [12], 

instruction embedding [13], are some of the binary level obfuscation algorithms.  

 

One of the limitations of all these obfuscation techniques is that they are all trying to obfuscate 

the instructions within a function. So, even though the obfuscation does a good job in obscuring 

the program, the functions remain intact. A reverse engineering tool will still be able to find the 

number of functions in the program and will be able to differentiate the instructions of one 

function from the other. 

  

In this paper we discuss an obfuscation technique where, we shuffle code fragments from 

different functions disturbing the linear order of functions in the program. The reverse 

engineering tool will identify more functions than the original program and each function will be 

a small code fragment of the original function. 

 

The paper is organized as follows. The proposed algorithm is explained in section 2. Section 3 

discusses about the implementation details of the obfuscation method. In section 4, we analyses 

the overhead created by our obfuscation on the program performance. Performance evaluation of 

our obfuscated algorithm is discussed in section 5. The paper concludes with section 6. 

 

2. PROPOSED METHOD  

 
In this section, our new obfuscation method against software reverse engineering is discussed.  

Our obfuscation algorithm takes an assembly program as input and split the functions in the 

program and shuffles them, while maintaining the semantics of the program. The assembly 

representation generated by any assembler maintains a functional structure of the program i.e., the 

functions in the program are spatially arranged one after another. Each function starts with the 

standard set of instructions, to set the stack, and ends with a return instruction(s). When a reverse 

engineering tool disassembles a binary program to an assembly representation, it is thus capable 

of identifying functions and could segregate them into different functional units. This can help the 

reverse engineer, better analyse the program or creating a function call graph.  

 

The basic idea of our technique is to disturb this normal representation of the program. In our 

technique, a function is split into various code fragments by inserting return instruction at the end 

of each code fragment. Each of these code fragments are then shuffled between functions, giving 

a inter-functional mix as shown in Fig. 1. One of the advantages of this method is that the linear 

arrangement of functions (one after another) is obscured. One of the challenges in implementing 

such a technique is to maintain the semantics of the program. In a normal program, a return 

instruction is used to return the control flow from a callee function to a caller function. Adding 
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new return instructions could thus affect the behaviour of a function. In this section, we explain in 

detail about inserting the return instructions into functions while maintaining the semantics of the 

program. 

 

Figure 1 Overview of the algorithm 

 

2.1. Splitting the function 

 
The first step of our algorithm is splitting the function into different segments. The input 

assembly program is scanned for finding all the functions in the program. Once the functions are 

identified, each function is split into different code fragments. The obfuscator has the option to 

specify the number of splits in the function. In the default mode the obfuscator splits each 

function into four code fragments. While splitting the function into code fragments, our 

implementation put a constraint that the code fragment should contain at least five instructions.  

 

For each function, the line numbers at which the function has to be split are identified and a 

randomly generated unique label is inserted. The unique label refers to the entry point of a code 

fragment. Fig. 2, shows the insertion of the labels to split the function into different segments.  

In the example shown, two labels are inserted at the beginning of the code fragments. 

 

Figure 2 Inserting labels at the splits 
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2.2. Pushing the return address to the stack 

 
We insert a ret (return) instruction at the end of each of the code fragment. This will make a 

disassembler think that each code fragment is a separate function. The ret instruction takes the 

return address from the stack and transfers the execution control to the particular address location. 

Thus, to maintain semantics, the current return address should be saved in the stack for later use 

and the address location of the next code fragment should be pushed into the stack as the new 

return address.  

 

In our obfuscation algorithm, at the end of each code fragment two assembly instructions are 

added before inserting the ret instruction.  One instruction stores the original return address in ebp 

+ 4 to a register that has not been used. It is followed by another instruction which stores the 

address of the next code fragment to the stack location ebp + 4. 

 

In the example shown in Fig. 2, register edx is used to store the current return address in the 

stack. The address location split_label_2 is then stored in the stack location ebp + 4. These two 

instructions can be stored anywhere between split_label_1 and split_label_2 and not necessarily 

at the end of the code fragment. 

 

Figure 3 Inserting return address in the stack 

 

2.3. Inserting return instruction 

 
The next step in our technique is to insert the ret instructions in each of the code fragments. Like 

a standard return instruction the stack pointer and base pointer are reset using the two 

instructions, move sp, ebp and pop ebp which is then followed by the ret instruction. We add an 

extra instruction to store the stack pointer value to a free register. In the example shown in Fig. 4, 

the instruction is mov ecx, esp, is used to store the value of stack pointer to the register ecx. 

 

We add an extra instruction to store the stack pointer value to a free register. In the example 

shown in Fig. 4, the instruction is  mov ecx, esp, is used to store the value of stack pointer to the 

register ecx. The reason for this instruction is that we cannot reset the stack pointer value as the 

function is not completely returning to its caller function and it is needed in the following code 

fragments that will get executed.  
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With the address location split_label_2 in stack and return address, the control, flows from the 

first code fragment to split_label_2, the beginning of the second code fragment when the ret 

instruction gets executed. 

 
Figure 4 Inserting return instruction 

 

2.4. Restoring the stack 

 
During the execution, after ret instruction from one code fragment is executed; the program 

execution control reaches the next code fragment. Since the stack pointer was reset during the 

return instruction, the stack has to be restored at the beginning of the new code fragment.  

 

The first address that has to be restored in the stack is the original return address, which is stored 

in the register edx. By pushing the register edx, we can restore the original return address in the 

stack. Instructions push ebp, and mov ebp, esp restores the ebp register. The original stack pointer 

value is stored in ecx register as shown in the example in Fig. 4. Instruction mov esp, ecx, restores 

the original stack pointer value. 

 

2.5. Shuffling the code fragments 

 
The obfuscation algorithm treats each code fragment as a separate function unit and shuffles them 

randomly. The linear order of the function representation is disturbed and code fragments from 

different functions will be interleaved together. This helps in inter-functional control flow 

obfuscation. 

 

Fig. 5 shows the function call graph of nqueens program generated by IDAPro, before and after 

obfuscation. The obfuscation has clearly confused the IDAPro that it is unable to generate the 

function calls from main after obfuscation.  Fig. 6 shows the disassembled main function of the 

program before and after obfuscation. It is clear from the figure that the control flow of the 

function is completely obscured by the obfuscation. 
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Figure 5 Function call graph of nqueens program 

 

 
Figure 6 Main function of nqueens program 
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3. IMPLEMENTATION  

 
The proposed obfuscation method is implemented in python programming language. Our 

implementation expects assembly level representation of the program to be obfuscated. We have 

implemented the obfuscation algorithm for Microsoft Windows XP and Ubuntu Linux 13.04 

operating systems. Our implementation accepts Microsoft Visual Studio 10.0 generated assembly 

programs and assembly program generated by gcc 4.7.3 as input for obfuscation. Our algorithm 

generates the obfuscated assembly program which is assembled using the corresponding assembly 

program to generate obfuscated binary program.  

 

The python code copies the input assembly program to a buffer. It analyses the buffer to find the 

functions and the start and end of the functions. The number of code fragments for each function 

is calculated according to the size of the function. The instructions to modify the stack for return 

address and restoring the stack pointer are added to the beginning and end of each code 

fragments. The line numbers of beginning and end of each code fragments are changed due to the 

insertion of instructions. The code fragments are given numbers in sequential order and are 

represented in a data structure with the number, starting line in the buffer and ending line in the 

buffer. A simple shuffling algorithm is used to shuffle the code fragments as shown in the 

following psuedocode. The code fragments are then stored into a new file in the shuffled order to 

generate the obfuscated assembly file. 

 

Shuffle_code_fragments (Code_Fragment_list []) 
L = Length (Code_Fragment_list) 

while  (L > 1) 

R = Random (1, L-1) 

Temp = Code_Fragment_List [R] 

Code_Fragment_List [R] = Code_Fragment_List [L]     

Code_Fragment_List [L] = Temp 

L = L -1 

Return Code_Fragment_List 

 

4. PERFORMANCE EVALUATION 

 
In this section we perform experimental evaluation of our algorithm against reverse engineering. 

We measure the efficacy of our algorithm by measuring the potency against IDAPro [1]. 

Instruction disassembly error which calculates the number of instructions that the reverse 

engineering tool is unable to disassemble properly gives the potency of the obfuscation algorithm. 

In this section, we also analyse the space and time overhead caused by the obfuscation. The 

increase in space and time at different levels of obfuscation is analysed. We used the test 

programs from the lcc 4.2 [17] compiler source as input test programs for our obfuscation 

algorithm. 

 

4.1. Instruction disassembly error 
 

The potency of the obfuscation algorithm against reverse engineering tool, is measured by the 

error in the disassembly of assembly instructions. IDAPro [1] was used to disassemble the 

obfuscated test programs. We measured the total number of instructions in the original program 

and the instructions recognized by IDAPro [1] after reverse engineering the obfuscated program. 

Confusion factor is then calculated as the ratio of their differences, as defined by the following 

equation,  

CFinstr = |Ttotal – Tdisasm| / Ttotal 
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The total number of instruction addresses before obfuscation is represented by Ttotal. The number 

of instruction addresses recognized by IDAPro [1] after disassembling the obfuscated binary 

program is represented by Tdisasm. 

 

Table 1 shows the confusion factor while disassembling obfuscated test pro-grams by IDAPro 

[1]. The table shows varies levels of splitting the program. The first column represented by zero 

splits is the original program and all the instructions are reverse engineered successfully. Column 

2 represents the obfuscated program, where every function is split into two and the mean 

disassembly error is 55.9% when functions are split into two. The instruction disassembly error 

increases as the splitting of the program increases. The splitting of a program saturates after a 

while. For instance, the program fields has the same instruction disassembly error for 16 splits 

and 32 splits. This is because the program is split to the maximum possible split by 16 splits and 

the program cannot be further split down. 

 

Mean instruction disassembly error of 85.16% is obtained at level 8, where each function is split 

into 8 code fragments. 

 
Table 1. Instruction Disassembly Error 

 
  Splits 

Prog 

0 2 4 8 16 32 64 128 

8q 
283 125 65 42 25 25 25 25 

array 
341 150 78 51 31 20 20 20 

cf 
184 81 42 28 17 11 11 11 

cq 
13786 6066 2068 2068 2068 2068 2068 2068 

cvt 
674 297 155 101 61 40 27 14 

fields 
339 149 78 51 20 20 20 20 

incr 
392 172 90 24 24 24 24 24 

init 
415 183 95 62 37 17 17 17 

limits 
162 71 37 24 12 12 12 12 

sort 
506 223 116 76 46 46 46 46 

spill 
433 191 100 65 39 26 26 26 

struct 
505 222 116 76 45 36 30 30 

wf1 
597 263 137 90 54 24 24 24 

CFinstr 
 55.9% 82.9% 85.1% 86.6% 87.2% 87.3% 87.4% 

 

4.2. Space overhead 
 

The insertions of the new instructions have significant effect on the size of the program. If a 

function is split into 2 code fragments, then 10 new instructions are added into the program and 

20 instructions are added if the function is split into 3 code fragments and so on. Let the number 

of instructions in the program be Nbefore and the original program is split into n+1 code fragments. 

The total number of instructions in the obfuscated program will be, 

 

Nafter = Nbefore + 10n 
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In the worst case, the entire program is split into code fragments with 5 instructions. Let the 

program is split into n+1 code fragments, with each code fragment having four instructions, then 

the total number of instructions in the program before obfuscation is, 

 

Nbefore = 5(n + 1) 

 

After the obfuscation, 10 instructions are added per code fragment and the total number of 

instructions in the program after obfuscation is, 

 

Nafter = 5(n + 1)+ 10n 

Nafter = 3Nbefore  - 10 

 

So, in the worst case there are three times more instructions in the obfuscated program than the 

original program. We can see in the experimental evaluation that this upper bound is held. 

Spaceovh defines the increase in the size of the program. 

 

Spaceovh  =  Spaceafter / Spacebefore 

In Table 2, we show how the program size increases as the program is obfuscated. The size of the 

program increases as the number of splits increase. In the worst case, the size increases to 2.2 

times the original size. But on an average, the program size increases by 1.57 times the original 

size with 128 splits, which is less than the theoretical upper bound. 

 
Table 2 Space Overhead 

 
    Splits 

Prog 

0 2 4 8 16 32 64 128 

8q 8743 8779 10256 13586 17843 17843 17843 17843 

array 8678 8714 11324 14321 18545 18923 18923 18923 

cf 8750 8786 9957 12985 13876 14178 14178 14178 

cq 63599 75898 85699 85699 85699 85699 85699 85699 

cvt 12983 13019 13091 13235 13523 14099 15251 21651 

fields 8728 8764 12633 13589 13589 13589 13589 13589 

incr 8594 8630 9987 12371 12371 12371 12371 12371 

init 9134 9170 9242 9386 9674 9782 9782 9782 

limits 8522 8558 8630 8774 12062 13458 13458 13458 

sort 8856 8882 11954 12098 14350 14350 14350 14350 

spill 8863 8899 10971 12115 16403 18799 18799 18799 

struct 8843 8879 8951 9095 9383 14055 17127 17127 

Wf1 13179 13215 13287 17521 18754 21875 21875 21875 

Mean 
177462 190193 215982 234775 256072 269021 273245 279645 

Spaceovh 1 1.07 1.21 1.32 1.44 1.51 1.53 1.57 
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4.2. Time overhead 
 

Obfuscation does have an effect on the execution time. The execution time of the program will 

increase, because of the execution of the additional instructions. We know that the size of the 

program increases by 3 times in the worst case. The input parameter of the time complexity thus 

increases by 3 times. If the original time complexity was T(n), then the new time complexity will 

be 3T(n) in the worst case. The time complexity of the obfuscated program is thus between T(n) 

and 3T(n). 

 

Timebefore refers to the time taken by the program to execute without obfuscation and Timeafter is 

the time taken by the obfuscated program to execute. We evaluate the effect of obfuscation on 

execution speed with Timeovh defined as, 

 

Timeovh  =  Timeafter / Timebefore 

 

Table 3, shows the time overhead caused by our obfuscation on various binary programs. In the 

worst case the time overhead is 2.36 times in the case of cvt with 128 levels of obfuscation. On an 

average the worst case time overhead is 1.86 which is lower than the upper bound of 3T(N). 

 
Table 3 Time Overhead 

 
    Splits 

Prog 

0 2 4 8 16 32 64 128 

8q 
1300 1395 1534 1975 2589 2589 2589 2589 

cf 
2777 3276 3588 4215 5014 5581 5581 5581 

cvt 
1077 1121 1154 1178 1223 1498 1892 2548 

fields 
1089 1258 1685 1987 2406 2406 2406 2406 

incr 
1271 1301 1354 1537 1537 1537 1537 1537 

spill 
1174 1256 1325 1456 1658 2219 2219 2219 

struct 
1342 1398 1469 1566 1689 1726 1754 1754 

wf1 
1245 1322 1391 1499 1785 1997 2015 2015 

array 
1011 1250 1347 1678 2001 2022 2500 2694 

cq 
1025 1119 1243 1567 1874 2198 2198 2198 

init 
1198 1245 1376 1461 1653 1985 1985 1985 

sort 
1037 1134 1256 1370 1523 1523 1523 1523 

Mean 
15546 17075 18722 21489 24952 27281 28199 29049 

Spaceovh 
1 1.09 1.20 1.38 1.60 1.75 1.84 1.86 

 

5. CONCLUSIONS 

 
In this paper we proposed an obfuscation algorithm to perform inter functional obfuscation. Our 

method slices each function in the program into separate code fragments. Each fragment ends 

with a return instruction and starts with stack allocation instructions, thereby appearing itself like 

a function. The return instruction transfers the control flow to the next code fragment instead of 

returning to a caller function. The code fragments are shuffled disturbing the linear order of the 
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functions. Unlike other control flow obfuscation, our method adds more control flow instructions 

(return instruction) to increase the control flow obscurity instead of removing the control flow 

instructions. The experimental results show that obfuscating with 8 splits provides a good 

obfuscation without too much overhead on the space and time requirements of the program. 

Experimental analysis shows that that our method has an instruction disassembly error of 85.1 % 

with 8 levels of splitting. An average time overhead of 1.38 and space overhead of 1.32 are 

observed while obfuscating with 8 splits. 
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