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ABSTRACT 

 
This paper provides a compressive sensing (CS) method of denoising images using Bayesian 

framework. Some images, for example like magnetic resonance images (MRI) are usually very 

weak due to the presence of noise and due to the weak nature of the signal itself. So denoising 

boosts the true signal strength. Under Bayesian framework, we have used two different priors: 

sparsity and clusterdness in an image data as prior information to remove noise. Therefore, it is 

named as clustered compressive sensing based denoising (CCSD).  After developing the 

Bayesian framework, we applied our method on synthetic data, Shepp-logan phantom and 

sequences of fMRI images. The results show that applying the CCSD give better results than 

using only the conventional compressive sensing (CS) methods in terms of Peak Signal to Noise 

Ratio (PSNR) and Mean Square Error (MSE). In addition, we showed that this algorithm could 

have some advantages over the state-of-the-art methods like Block-Matching and 3D 

Filtering (BM3D).   
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1. INTRODUCTION 

 
Image denoising is an integral part of image processing. There are different sources of noise for 

images and different noise models are assumed to remove or reduce noise (to denoise), 

accordingly. Mostly image noises are modelled by additive white Gaussian distribution while 

others like ultrasound and MRI images can be modelled by speckle and Rican distribution 

respectively [1]. In the past decades, removing the noises has been given ample attention and 

there are several ways to de-noise an image. A good image denoising technique removes the 

noise to a desirable level while keeping the edges. Traditionally, this has been done using spatial 

filtering and transform domain filtering. The former uses median filter, Weiner filter and so on 

while the later uses Fast Fourier Transform (FFT) and Wavelet Transform (WT) to transform the 
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image data to frequency or time-frequency domain, respectively. The later transform method have 

been used intensively due to the fact that the Wavelet transform based methods surpasses the 

others in the sense of mean square error (MSE) or pick signal to noise ratio (PSNR) and other 

performance metrics [1], [2], [3]. 

 

Recently, another way of image denoising has been used after a new way of signal processing 

method called compressive sensing (CS) was revived by authors like Donoho, Candés, Romberg 

and Tao [4]- [7]. CS is a method to capture information at lower rate than the Nyquist- Shannon 

sampling rate when signals are sparse or sparse in some domain. It has already been applied in 

medical imaging. In [8] the authors have used the sparsity of magnetic resonance imaging (MRI) 

signals and showed that this can be exploited to significantly reduce scan time, or alternatively, 

improve the resolution of MR imagery and in [9] it is applied for Biological Microscopy image 

denoising to reduce exposure time along with photo- toxicity and photo-bleaching. Since CS-

based denoising is done using reduced amount of data or measurement. Actually, it can remove 

noise better than the state-of the art methods while using few measurements and preserving the 

perceptual quality [10]. This paper builds up on the CS based denoising and incorporates it with 

the clustredness of some image data. This is done using a statistical method called Bayesian 

framework. 

 

There are two schools of thoughts called the classical (also called the frequentist) and the 

Bayesian in the statistical world. Their basic difference arises from the basic definition of 

probability. Frequentists define P(x) as a long-run relative frequency with which x occurs in 

identical repeats of an experiment. Where as Bayesian defines P(x|y) as a real number measure of 

the probability of a proposition x, given the truth of the information represented by proposition y. 

So under Bayesian theory, probability is considered as an extension of logic. Probabilities 

represent the investigators degree of belief- hence it is subjective. That belief or prior information 

is an integral part of the inference done by the Bayesian [11] - [20]. For its flexibility and 

robustness this paper focuses on Bayesian approach. Specifically the prior information’s like 

sparsity and clusterdness (or structures on the patterns of sparsity) of an image as two different 

priors are used and the noise is removed by using reconstructing algorithms. 

 

Our contribution in this work is to use the Bayesian framework and incorporate two different 

priors in order to remove the noise in an image data and in addition we compare different 

algorithms. Therefore, this paper is organized as follows. In section II we discuss the problem of 

denosing using the CS theory under the Bayesian framework, that is using two priors on the data, 

the sparse and clustered priors, and define the denosing problem in this context. In section III we 

provide how we implemented the analysis. Section IV shows our results using synthetic and MRI 

data, and section V presents conclusion and future work.  

 

2. COMPRESSED SENSING BASED DENOISING 
 

In Wavelet based transform denosing the image data is transformed to time-frequency domain 

using Wavelet. Only the largest coefficients are kept and the rest are thrown away using 

thresholding. Then by applying the inverse Wavelet transform the image is denoised [21], 

however, in this paper we used CS recovery as denosing. 

 

Considering an image which is sparse or sparse in some domain, which has sparse representation 

in some domain or most of the energy of the image is compressed in few coefficients, say � ϵ ℝ� 

with non zero elements k, corrupted by noise n ϵ ℝ�. It is possible to use different models of 

noise distribution. By using a measurement matrix A ϵ ℝ�×�, we get a noisy and under sampled 

measurements 
 ϵ ℝ�. Further we assume that w = An ϵ ℝ� is i.i.d. Gaussian random variables 

with zero mean and covariance matrix σ�I, due to the central limit theorem. This assumption can 
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be improved further. However, in this work we approximate it by Gaussian distribution for �. 

The linear model that relates these variables is given by 

 


 = �� � �              2.1 

 

Here � ≫ � and � ≫ �, where � is the number of nonzero entries in �. Applying CS 

reconstructions using different algorithms we recover the estimate of the original signal �, say ��. 

In this paper, denosing is done simultaneously with reconstructing the true image data using non-

linear reconstruction schemes, which are robust, [22] and the block diagram describing the whole 

process is given by Figure 1.  
 

 

 

 

 

 

 

 
Figure 1: Block diagram for CS based denosing. 

 

Various methods for reconstructing � may be used. We have the least square (LS) estimator in 

which no prior information is applied: 

 

�� = ���������
,                        2.2 

 

which performs very badly for the CS based denoising problem considered here. Another 

approach to reconstruct � is via the solution of the unconstrained optimization problem 

   

�� = min�   ℝ!
�
�

  ‖
 # ��‖�
� � $%���                2.3 

 

where  $%��� is a regularizing term, for some non-negative $. If %���  =  ‖� ‖&, emphasis is 

made on a solution which shall LP norm, and = norm, and ‖� ‖& is denoted a penalizing norm. 

When ' =  2, we get  

 

�� = min�   ℝ!
�
�

  ‖
 # ��‖�
� � $‖� ‖�.                 2.4 

 

This is penalizing the least square error by the L2 norm and this performs bad as well, since it 

does not introduce sparsity into the problem. When ' =  0, we get the L0 norm, which is defined 

as 

 

‖� ‖+ = � ≡ -. / -1,2, … , �3|�5  6 03, 

 

the number of the non zero entries of �, which actually is a partial norm since it does not satisfy 

the triangle inequality property, but can be treated as norm by defining it as in [23], and get the 

L0 norm regularizing estimator 

 

�� = min�   ℝ!
�
�

  ‖
 # ��‖�
� � $‖� ‖+                   2.5 

 

which gives the best solution for the problem at hand since it favour’s sparsity in �. Nonetheless, 

it is an NP- hard combinatorial problem. Instead, it has been a practice that one reconstructs the 

image using L1 penalizing norm to get the estimator 

 



188 Computer Science & Information Technology (CS & IT) 

 

�� = min�   ℝ!
�
�

  ‖
 # ��‖�
� � $‖� ‖�                   2.6 

 

which is a convex approximation to the L0 penalizing solution II.5. These estimators, 2.4 - 2.6, 

can equivalently be presented as solutions to constrained optimization problem [4] - [7], and in 

the CS literature there are many different types of algorithms to implement them. A very popular 

one is the L1 penalized L2 minimization called LASSO (Least Absolute Shrinkage and Selection 

Operator), which we later will present it in Bayesian framework. So first we present what a 

Bayesian approach is and come back to the problem at hand. 

 

2.1. Bayesian framework 

 
Under Bayesian inference consider two random variables � and 
 with probability density 

function (pdf) '��� and '�
�, respectively. Using Bayes’ theorem it is possible to show that the 

posterior distribution, '��|
�, is proportional to the product of the likelihood function, '�
|��, 
and the prior distribution, '���, 

 

'��|
�  ∝  '�
|��'���       2.7 

 

Equation (2.7) is called Updating Rule in which the data allows us to update our prior views 

about �. And as a result we get the posterior which combines both the data and non-data 

information of � [11], [12], [20]. 

 

Further, the Maximum a posterior (MAP), ��89, is given by  

 

��89  =  arg max> '�
|��'��� 

 

To proceed further, we assume two prior distributions on �. 

 

2.2. Sparse Prior 

 
The reconstruction of � resulting from the estimator (2.3) for the sparse problem we consider in 

this paper given by, (2.4) - (2.5), can be presented as a maximum a posteriori (MAP) estimator 

under the Bayesian framework as in [23]. We show this by defining a prior probability 

distribution for � on the form 

'��� =  ?@AB�C�

D ?@AB�C�E>C F ℝG
      2.8 

 

where the regulirizing function % ∶  I → K  is some scalarvalued, non negative function with  

I ⊆  ℝ which can be expanded to a vector argument by 

 

%��� =  ∑ %��5�N
5O�                2.9 

 

such that for sufficiently large $, D P�QR�>�S�> T ℝG  is finite. Further, let the assumed variance of 

the noise be given by 

U� =  
V
$

 

 

where  V is system parameter which can be taken as V =  U�$. Note that the prior, (2.8), is 

defined in such a way that it can incorporate the different estimators considered above by 
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assuming different penalizing terms via %��� [23]. Further, the liklihood function, '�
|��, can be 

shown to be 

 

pX|��y|x� = �
��Z[�!/] e� _

]`]‖X�a�‖]
]
     2.10 

the posterior, p�x|y�, 
 

 

p�|X�x|y; A� =
e� �

�[]‖X�a�‖]
]

�2πσ��/� D d@e� _
]f‖g@hi‖]

]jfk�i��l�i m ℝ!

 

and the MAP estimator becomes  

 

 

x��n = arg min�   ℝ!
�
�

‖y # Ax‖�
� � λf�x�    2.11 

 

as shown in [20]. Note that (2.11) which is equivalent to (2.3). Now, as we choose different 

regularizing function, which enforces sparsity into the vector x, we get different estimators listed 

below [23]: 

 

1) Linear Estimators: when f�x�  = ‖x‖�
� (2.11) reduces to 

 

x�qrsdtu = AvwAAv � λIx
��

y,     2.12 

 

which is the LMMSE estimator. But we ignore this estimator in our analysis since the         

following two estimators are more interesting for CS problems. 

 

2) LASSO Estimator: when f�x�  = ‖x‖� we get the LASSO estimator and (II.11) becomes, 

 

x�qayyz = arg min�   ℝ!
�
�

‖y # Ax‖�
� � λ‖x‖�,    2.13 

 

which is the same as (2.6). 

 

3) Zero-Norm regularization estimator: when %�x�  = ‖x‖+, we get the Zero-Norm 

regularization estimator (2.5) to reconstruct the image from the noisy data and (2.11) 

becomes 

 

x�{du|��|u} = arg min�   ℝ!
�
�

‖y # Ax‖�
� � λ‖x‖+,    2.14 

 

which is identical to 2.5. As mentioned earlier, this is the best solution for reconstruction of the 

sparse vector �, but is NP-complete. The worst reconstruction for the sparse problem considered 

is the L2- regularization solution given by (2.12). However, the best one is given by the equation 

(2.13) and its equivalent forms such as L1-norm regularized least-squares (L1-LS) and others [5]- 

[7]. 

 

2.3. Clustering Prior 

 
Building on the Bayesian philosophy, we can further assume another prior distributions for 

clustering. The entries of the sparse vector � may have some structure that can be represented 

using distributions. In [18] a hierarchical Bayesian generative model for sparse signals is found in 
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which they have applied full Bayesian analysis by assuming prior distributions to each parameter 

appearing in the analysis. We follow a different approach. Instead we use another penalizing 

parameter to represent clusterdness in the data. For that we define the clustering using the 

distance between the entries of the sparse vector � by 

 

~��� ≡ ∑ |�5 # �5��|N
5O� , 

 

and we use a regularizing parameter . Hence, we define the clustering prior to be 
 

���� =  ?@���C�

D ?@���C�E>i m ℝ!
                                                            2.15 

 

The new posterior involving this prior under the Bayesian framework is proportional to the 

product of the three pdf’s: 

 

 p�x|y)  ∝  p(y|x)p(x)q(x).                                               2.16 

 

 By similar arguments as used in 2.2 we arrive at the Clustered LASSO estimator 

 

x�����qayyz = arg min�   ℝ!
�

�
‖y − Ax‖�

� + λ‖x‖� + � ∑ |�5 − �5��|N
5O� ,       2.17 

 
where λ, γ are our tuning parameters for the sparsity in � and the way the entries are clustered, 

respectively. 

 

3. IMPLEMENTATION OF THE ANALYSIS 

 
The main focus of this paper is to give a practical application of compressed sensing, namely 

denoising. That is we interpret the reconstruction of images by CS algorithms, given relatively 

few measurements y and measurement matrix A, as denosing. That means the CS based denosing 

happens when we apply the reconstructing schemes. Actually, we have used both CS based 

(LMMSE, LASSO and Clustered LASSO given by equations (2.12), (2.13), (2.17) respectively) 

and non-CS based denoising procedures (LS (2.2); BM3D). So that we compare the merits and 

draw backs of CS based denoising techniques. 

 

In the equations (2.12) , (2.13), and (2.17) we have parameters like λ and γ. As we have based our 

analysis in Bayesian framework we could have assumed some prior distributions on each of them, 

and build a hierarchical Bayesian compressive sensing. Instead we have used them as a tuning 

parameter for the constraint and we have tried to use them in the optimal way. Still it needs more 

work! However, we have found an optimal λ value for the LMMSE in (2.12), that is λ = 1e−07. In 

implementing (2.13), that is least square optimization with L1 regularization, we have used the 

Quadratic programming with constraints similar to Tibshirani [24], [25]. That is solving 

 

x� = arg min� ‖y − Ax‖�
�     3.1 

       �$��P�� ��  ‖x‖� ≤ t, 
 

instead of (2.13). We see that � and λ are related.  

 

In addition, equation (II.17) is implemented similar to LASSO with additional term on the 

constraint. That is we bounded ~(�)  ≤ S. This S is some how related to γ, i.e., we put constrain 

on the neighboring elements. Since we have vectorized the image for the sake of efficiency of the 

algorithm, the penalizing terms are applied column wise. Other ways of implementing 
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(constraining) are also possible. But we differ it for future work. In our simulations we have used 

optimal values of these constraints. Figure 2 and 3 show the respective optimal values for one of 

the simulations in the next section. 

 
 

Figure 1:  This figure shows the MSE of LASSO and clustered LASSO for different values of � for figure 

4. It can be seen that there is only one optimal value. 

 

 
 

Figure 2: This figure shows the MSE of LASSO and clustered LASSO for different values of � for figure 

4. It can be seen that there is only one optimal value d and by loosening the constraint clustered LASSO 

will converge to LASSO. 

 

4. RESULTS 
 

4.1 First set of Synthetic Data 
 

In order to demonstrate the performance of reconstruction of the sparse signal (denosing) 

presented in the paper we have used synthetic data. The first set of data is the image with several 

English letters, where the image itself is sparse and clustered in the spatial domain. We have 

applied Gaussian noise with mean zero and variance σ2 = 0.2 and random matrix � with Gaussian 

entries with variance σ2 = 1. For LMMSE we used λ = 1e − 07 in our simulations. However, we 

have used equivalent constraints for λ and γ for the LASSO and clustered LASSO. 
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The original signal after vectorization is � is of length N = 300 and we added noise to it. By 

taking 244 measurements, that is y is of length M = 244, and maximum number of non-zero 

elements k = 122, we applied different denosing techniques. There are several CS reconstructing 

algorithms like LMMSE, LASSO and Clustered LASSO, which are used as denosing techniques 

in this paper. In addition, the state of the art denosing technique, called Block-matching and 3D 

filtering (BM3D) (http://www.cs.tut.fi/foi/GCF-BM3D/) [26], is used as reference. Note that 

BM3D uses full measurements in contrast to the CS based denoising methods. The results are 

shown in figure 4. The result in figure 4 shows that denosing using clustered LASSO performs 

better than other methods, which use fewer measurements. However, BM3D, which uses full 

measurements, has better performance. This is also visible in Table I, by using the performance 

metrics like the mean square error (MSE) and pick signal to noise ratio (PSNR). However, it is 

possible to improve the performance of clustered LASSO by considering other forms of 

clustering, which will be our future work. 

 
TABLE I: Performance comparison in figure 4 

 

Algorithm MSE PSNR in dB 
LS 0.41445 7.6506 

LMMSE 0.14623 16.699 

LASSO 0.11356 18.8955 

Clustered LASSO 0.082645 27.1302 

BM3D 0.044004 21.6557 

 

  
 

Figure 3: Comparison of denosing techniques for the synthetic image: a) Original image x b) Noisy image 

c) Least Square (LS) d) LMMSE e ) LASSO f) Clustered Lasso g) BM3D. 

 

4.2 Second set of Synthetic Data 

 
On this image we added different noise models such as Gaussian with mean 0 and variance 0.01, 

Salt & pepper with noise density 0.03, and Speckle noise, i.e. with uniform distribution zero mean 

and variance 0.3. Clustered LASSO performs consistently better than LASSO. The original signal 

after vectorization is � is of length N = 300 and we added noise to it. By taking 185 

measurements, that is 
 is of length M = 185, and maximum number of non-zero elements k = 84, 

we applied different denosing techniques. The results in figure 5 are interesting. Because 

clustered LASSO has higher PSNR than BM3D as shown in Table II. 
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TABLE II: Performance comparison in figure 5 

 

Algorithm Gaussian (0, 0.01) Salt & pepper Speckle 

LS 2.3902 4.3149 8.9765  

LMMSE 26.4611 24.6371 24.8943  

LASSO 17.9837 22.6761 30.8123  

Clustered LASSO 32.1578 40.6193 37.3392  

BM3D 41.6925 32.1578 32.7813 

 

 
 

Figure 4: Application of different denosing techniques discussed in the paper (in their vertical order: LS, 

LMMSE, LASSO, Clustered LASSO, BM3D) on different types of noises (in the vertical order: Gaussian 

with mean 0 & variance 0.01, Slat & Pepper with 0.03 and Speckle 0.3) . 

 

4.3 Phantom image 

 
The third image is a known medical related image, Shepp-Logan phantom, which is not sparse in 

spatial domain but in K-space. We add noise to it, and we took the noisy image to K-space. After 

that we zero out small coefficients and apply the CS denoising methods and then converted it 

back to spatial domain. But for BM3D we used only the noisy image in the spatial domain. The 

original signal after vectorization is � is of length N = 200. By taking 138 measurements, that is y 

is of length M = 138, and maximum number of non-zero elements k = 69, we applied different 

denosing techniques. The result shows clustered LASSO does well compared to the others CS 

algorithms and LS. But it is inferior to BM3D, which uses full measurement. This can be seen in 

figure 6 and Table III.  
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TABLE I: Performance comparison in figure 6 

 

Algorithm MSE PSNR in dB 

LMMSE 0.016971  35.4057  

LASSO 0.0061034 44.2885  

Clustered LASSO 0.006065 44.3434  

BM3D 0.0020406 53.8048 

 

 
 
Figure 5:  Comparison of denosing techniques for the phantom image: a) Original    image b) Noisy image 

c) sparsed noisy image d) denosing using BM3D e) denosing using LMMSE f) denosing using LASSO g) 

denosing using Clustered LASSO. 

 

In addition for the first set of synthetic data we have compared the different denoising techniques 

using PSNR versus measurement ratio (M/N) and the result is shown in figure 7. Generally, the 

CS based denosing performs well in relation to these metrics if we have a sparse and clustered 

image. 
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Figure 6 Comparison of denosing (reconstruction) algorithms using PSNR versus measurement ration M/N. 

 

5. CONCLUSIONS 

 
In this paper, denosing using compressive sensing under Bayesian framework is presented. Our 

emphasis in this work is to incorporate prior information’s in the denosing of images with further 

intention to apply such techniques to medical imaging, which usually have sparse, and some 

clustredness characteristics. The denosing procedure in this work is done simultaneously with the 

reconstruction of the signal, which is an advantage from the traditional denosing procedures. 

Since using CS basically has already additional advantage of recovering images from under 

sampled data using fewer measurements! We showed also that clustered LASSO denosing does 

well for different noise models. In addition, in this work we have shown comparison of the 

different reconstruction algorithms performance for different amount of measurement versus 

PSNR. For future work we plan to apply different forms of clustering depending on the prior 

information’s of images or geometry of clustredness. 
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