

David C. Wyld et al. (Eds) : ITCS, CST, JSE, SIP, ARIA, DMS - 2015

pp. 165–184, 2015. © CS & IT-CSCP 2015 DOI : 10.5121/csit.2015.50117

OUDG: CROSS MODEL DATUM ACCESS

WITH SEMANTIC PRESERVATION FOR

LEGACY DATABASES

Joseph Fong

1
 and Kenneth Wong

2

1
Department of Computer Science, City University of Hong Kong, Hong Kong

1csjfong@cityu.edu.hk,2wting_yan@hotmail.com

ABSTRACT

Conventional databases are associated with a plurality of database models. Generally database

models are distinct and not interoperable. Data stored in a database under a particular

database model can be termed as “siloed data”. Accordingly, a DBMS associated with a

database silo, is generally not interoperable with another database management system

associated with another database sil. This can limit the exchange of information stored in a

database where those desiring to access the information are not employing a database

management system associated with the database model related to the information. The DBMS

of various data models have proliferated into many companies, and become their legacy

databases. There is a need to access these legacy databases using ODBC. An ODBC is for the

users to transform a legacy database into another legacy database. This paper offers an end

user’s tool of Open Universal Database Gateway(OUDG) to supplement ODBC by

transforming a source legacy database data into Flattened XML documents, and further

transform Flattened XML document into a target legacy database. The Flattened XML

document is a mixture of relational and XML data models, which is user friendly and is a data

standard on the Internet. The result of reengineering legacy databases into each other through

OUDG is information lossless by the preservation of their data semantics in terms of data

dependencies.

KEYWORDS

Open universal database gateway, Legacy databases, Flattened XML Documents, Data

semantics, Data dependencies, Open database connectivity

1. INTRODUCTION

The database management system (DBMS) of various data models have proliferated into many

companies and, over time, have become legacy databases within the companies. However, there

is a need to access these legacy databases, e.g., for mass information transmission associated with

e-commerce, etc. Legacy databases, e.g., conventional databases, can be associated with a

plurality of database models, e.g., database silos. These database silos can be distinct and fail to

interoperate without significant costs or loss of data or data semantic information. Siloed data,

e.g., data within a database model acts is typically only readily accessible or interoperable within

that database model and not with data stored in another database silo, can limit the exchange of

information where those desiring to access the information are not employing a related DBMS.

166 Computer Science & Information Technology (CS & IT)

Additionally, even where a database environment is relatively modern, it can be incompatible

with other relatively modern database silos. The plurality of database silos in itself can be an

impediment to sharing data among them. As an example, where a first company employs a first

database associated with a first database model, a second company employs a second data model

for their data, and a third company employs a third data model for their data, sharing of data

across the three data silos can be impractical or impossible. Where the first company purchase

the second company, incorporating the second company’s data can be problematic, e.g., it can

require rewriting the data into the first data model at the risk of losing data or semantics.

Alternatively, the first company can operate the two databases separately but are then internally

faced with the incongruences of the two databases, bear the costs associated with operating or

maintaining two separate databases, etc. Further, the first company, even with access to the first

and second databases, still can face serious challenges with sharing data with the third company.

The evolution of database technologies intend to meet different users requirements. For example,

the Hierarchical and Network (Codasyl) databases(NDB) are good for business computing on the

large mainframe computers. The user friendly relational databases(RDB) are good for end user

computing on personal computers. The object‐oriented databases(OODB) are good for

multi‐media computing on mini computers. The XML databases(XML DB) are good for Internet

computing on the mobile devices. These are first generation Hierarchical and Network databases,

second generation relational databases, and third generation Object-Oriented and XML databases.

Flattened XML documents

Flattened XML documents are generic representation of any legacy database instance in any

legacy database data model. Flattened XML document is a valid XML document which contains

a collection of elements of various types and each element defines its own set of properties. The

structure of the flattened XML document data file is a relational table structured XML document.

It has XML document syntax with relational table structure. It replaces primary key with ID, and

foreign key with IDREF as follows:

<?xml version="1.0">

<root>

 <table1 ID="…" IDREF1="…" IDREF2="…" … IDREFN="…">

 <attribute1>…</attribute1>

 …

 <attributeN>…</attributeN>

 </table1>

 …

 <tableN ID="…" IDREF1="…" IDREF2="…" … IDREFN="…">

 <attribute1>…</attribute1>

 …

 <attributeN>…</attributeN>

 </tableN>

</root>

For each table, the name of the table (tableN) determines its type name and the name of property

(attributeN) determines its property name. Each table defines an ID type attribute that can

uniquely identify itself and there are optional multiple IDREF type attributes that can refer to the

ID in other tables in the same flattened XML document instance. Each property XML element

encloses a property value in a proper textual representation format. In order to ensure a flattened

XML document instance to be valid, there must be either an internal or an external DTD

document that defines the XML structures and attribute types, in particular for those ID and

IDREF type attributes.

Computer Science & Information Technology (CS & IT) 167

Open Universal Database Gateway

An open universal database gateway(OUDG) is a database middleware which provides more

flexibility for the users to access legacy databases in their own chosen data model. Users can

apply OUDG to transform legacy databases into flattened XML documents, and then further

transform them into user’s own familiar legacy database for access. Since XML is the data

standard on the Internet, it becomes information highway for user to access data.

The reason we choose flattened XML document is due to its openness for DBMS independence.

All other data models are DBMS dependent. For example, an Oracle database can only be

accessed by Oracle DBMS, and a MS SQL Server database can only be accessed by MS SQL

Server DBMS. Nevertheless, users can access flattened XML documents on the Internet by

Internet Explorer without programming. Therefore, an Oracle user can access an MS SQL Server

database by using OUDG transforming the MS SQL Server database into flattened XML

document, and then further transform flattened XML document to Oracle database.

Similarly, the reason we choose relational table structure for the flattened XML document is that

relational table structure has a strong mathematical foundation of relational algebra to implement

the constraints of major data semantics such as cardinality, isa and generalization to meet users’

data requirements by replacing primary keys and foreign keys into ID(s) and IDREF(s) in XML

schema.

The OUDG can transform legacy databases into flattened XML document, and then further

transform the flattened XML document into one of four target legacy databases: relational,

object-oriented, XML and network. The result is that OUDG allows users reengineer a source

legacy database into an equivalent target legacy database of user’s choice with data semantics

preservation.

This paper offers flattened XML documents as universal database medium for the interoperability

of all legacy databases that can be accessed by the users using their own familiar legacy database

language via OUDG. We consider hierarchical data model same as XML data model in this paper

because they are all in tree structure. All proprietary legacy data models can be united into

flattened XML document as universal database as shown in Figure 1.

Figure 1. Legacy Databases Interoperability via Flattened XML documents

The major difference between regular tree-based XML document and flattened XML document is

that the latter is more user friendly and efficient in database update since its database navigation

access path is much shorter than the former. The flattened XML document database navigation

access path is limited to 2 levels from root element to sibling elements while the regular XML

document database access path is in several levels and much longer in general.

168 Computer Science & Information Technology (CS & IT)

Problems:

(1) Most legacy database systems are proprietary. Database vendors do not facilitate tools to

export their databases to other legacy databases. Thus, companies need to use ODBC to access

heterogeneous databases, which requires programming and much time effort.

(2) Most users cannot access all legacy databases because they do not know all legacy database

languages. They rely on ODBC, which is not easy to learn.

(3) It is difficult to convert legacy databases in different data models because the data conversion

of legacy database involves data models transformation.

Solution:

Through OUDG, users can use one database language access another legacy databases of

relational, object-oriented, network and XML. The operation is more reliable and speedy because

same data can be concurrently processed by legacy database and their equivalent flattened XML

document.

Academic merit:

The novelty is that it is feasible to replace ODBC by OUDG transforming legacy database into

flattened XML document for access. ODBC needs programming, but OUDG is an end user

software utility.

Industrial merit:

The application of flattened XML document is for information highway on the Internet for data

warehouse, decision support systems (Fong, Li & Huang, 2003). The benefits are information

sharing among users for database interoperability.

OUDG as supplement for ODBC

OUDG can supplement ODBC to access any legacy database by transforming(reengineering)

them into a flattened XML document for access as universal database which is defined as a

database interchangeable to all legacy databases.

At present, most database systems are proprietary. Each DBMS vendor has software tools which

convert other legacy databases into databases using their own DBMS(s), but not vice versa for

converting their own databases into a target legacy database. The result makes legacy databases

not open to each other. However, using OUDG, any legacy database can be transformed into any

other legacy database via flattened XML documents. The benefit is that data sharing and data

conversion among legacy databases becomes possible. The openness of legacy database is

necessary for such application such as data warehousing, data mining and big data.

Figure 2 shows the architecture of an open universal database gateway which transforms legacy

databases into each other with different data models via flattened XML document as a

replacement for open database connectivity.

Data Semantics preservation in legacy databases

Data semantics describe data definitions and data application for users’ data requirements, which

can be captured in the database conceptual schemas. The following are the data semantics which

can be preserved among the legacy conceptual schemas and their equivalent flattened XML

schema:

(a) Cardinality: 1:1, 1:n and m:n relationships set between two classes

A one-to-one relationship between set A and set B is defined as: For all a in A, there exists at

most one b in B such that a and b are related, and vice versa. The implementation of one-to-one

relationship is similar to one-to-many relationship.

Computer Science & Information Technology (CS & IT) 169

A one-to-many relationship from set A to set B is defined as: for all a in A, there exists one or

more b in B such that a and b are related. For all b in B, there exists at most one a in A such that a

and b are related.

A many-to-many relationship between set A and set B is defined as: For all a in A, there exists

one or more b in B such that a and b are related. Similarly, for all b in B, there exists one or more

a in A such that a and b are related.

In relational schema, 1:n is constructed by foreign key on “many” side referring to primary key

on “one” side. It can also be implemented by association attribute of a class object on “one” side

points to another class objects on “many” side in object-oriented schema. It can also be

implemented by owner record occurrence on “one” side and member record occurrences on

“many” side in network schema. It can also be implemented by element occurrence with IDREF

on “many” side links with element occurrence with ID on “one” side in XML schema. As to m:n

cardinality, it can be implemented by two 1:n cardinalities with 2 “one” side classes link with 1

“many” side class.

 (b) Isa relationship between a superclass and a subclass

The relationship A isa B is defined as: A is a special kind of B.

In relational schema, a subclass relation has same primary key as its superclass relation, and

refers it as a foreign key in isa relationship. In object-oriented schema, isa can be implemented by

a subclass inheriting its superclass’s OID and attributes. In Network schema, isa can be

implemented by an owner record that has same key as its member record in network schema via

SET linkage. In XML schema, isa can be implemented by an element links one-to-one occurrence

with its sub-element.

 Figure 2. Architecture of OUDG with schema translation and data transformation

(c) Generalization is the relationship between a superclass and its subclasses.

Multiple isa relationships construct generalization with common superclass.

In relational schema, A is a special kind of B, and C is also a special kind of B, then A and C

subclasses can be generalized as B superclass. In relational schema, multiple subclass relations

and their superclass relation contain the same key, with subclass relations’ keys referring to

superclass key as foreign key in generalization. In object-oriented schema, multiple subclasses

objects contain the same OID as their superclass object in generalization. In network schema, one

owner record links with multiple member records through a SET in generalization. In XML

schema, multiple subclass elements and their superclass element are in 1:1 linkage with same key

attribute in generalization. Generalization can be implemented by multiple isa relationships with

multiple subclasses generalized into one superclass.

Initially, OUDG maps major data semantics of cardinality, isa, and generalization into each

legacy data model as shown in Table 1 which shows data semantics preservation in legacy data

models and Flattened XML document

The preservation of data semantics among legacy databases can be verified by the preservation of

their data dependencies as follows:

Definition of FD (functional dependency)

170 Computer Science & Information Technology (CS & IT)

Given a relation R, attribute Y of R is functionally dependent on attribute X of R, i.e., FD: R.X �

R.Y, iff each X-value in R has associated with it precisely one Y value in R. Attribute X and Y

may be composite.

Definition of ID (inclusion dependency)

ID: Y Z states that the set of values appearing in attribute Y must be a subset of the set of

values appearing in attribute Z.

Definition of MVD (multi-valued dependency)

Let R be a relation variable, and let A, B and C be the attributes of R. Then B is multi-dependent

on A if and only if in every legal value of R, the set of B values matching a given AC pair value

depends on the A value, and is independent of the C value.

In general, the mapping and the preservation of the data semantics of cardinality, isa, and

generalization among legacy databases schemas can be shown in Figure 3 as follows:

In one-to-many cardinality, for example, each child relation B tuple determines its parent relation

A tuple in relational schema; each member record B determines its owner record A in network

schema; each “many” side object B determines its associated “one” side object A in object-

oriented schema, and each sub-element B occurrence determines its element A occurrence in

XML schema.

In many-to-many cardinality, two one-to-many cardinality MVD(s) can construct a many-to-

many cardinality. For example, many tuples in relation B determine many tuples in relation A

and vice versa (many relation A tuples determine many relation B tuples); many records B

determine many records A. Therefore many elements B occurrence determine many elements A

occurrences, and vice versa.

Table 1 showing information related to data semantic preservation.

Data model\

Data Semantic

Relational Object-

Oriented

Network XML Flattened

XML

1:n cardinality Many child

relations’

foreign keys

referring to

same parent

relation’s

primary key.

A class’s

association

attribute

refers to

another

class’s many

objects’

OID(s) as a

Stored OID.

An owner

record data

points to

many

member

records data

via SET

linkage.

An element

has many

sub-elements.

The IDREF(s)

of a “many”

side sibling

element’s data

refer to an ID

of “one” side

sibling

element data

under root

element.

Computer Science & Information Technology (CS & IT) 171

m:n

cardinality

A

relationship

relation’s

composite

key are

foreign keys

referring to 2

other

relations’

primary keys.

A class’s

association

attribute

refers to

another

class’s many

objects’

OID(s) as an

Stored OID,

and vice

versa.

Two owner

records data

point to the

same

member

record data

via 2 SETs

linkages .

A sub-

element of an

element links

another

element

IDREF

referring to

the latter’s

ID. The 2

elements are

in m:n

cardinality.

An sibling

element data

has 2

IDREF(s)

referring to 2

other sibling

elements ID(s)

under root

element.

Is-a Subclass

relation’s

primary key is

a foreign key

referring to its

superclass

relation’s

primary key.

A subclass

inherit

OID(s),

attributes and

methods of its

superclass as

its OID plus

its own

attributes and

methods.

An owner

record data

links to a

member

record data in

1:1 with same

key.

An element

occurrence

links with a

sub-element

occurrence in

1:1 linkage.

The IDREF of

a subclass

sibling

element data

refers to the

ID of a

superclass

sibling

element. Both

elements has

same key

value under

root element.

Generalization 2 subclass

relations’

primary keys

are foreign

keys referring

to same

superclass

relation’s

primary keys.

Two

subclasses

inherit OID

and attributes

of their

identical

superclass as

their OID plus

their own

attributes.

An owner

record data

occurrence

points to two

member

records data

occurrence

with same

key.

An element

data

occurrence

links with two

sub-elements

data

occurrence in

1:1 linkages.

The IDREF(s)

of 2 subclass

sibling

elements data

occurrence

refer to an ID

of a superclass

sibling

element data

occurrence

with same key

value under

root element.

In isa relationship, for example, each B tuple is a subset of A tuple; each record B is a subset of A

record; each object B is a subset of object A; and each sub-lement B occurrences is a subset of

element A occurrence. In generalization, the data dependencies are similar to isa relationship,

except the pair of subclass B and C is a subset of superclass A.

The above data semantics can be preserved in flattened XML documents with sibling elements

only, linking with each other via IDREF and ID as shown in Figure 4.

172 Computer Science & Information Technology (CS & IT)

Relational Schema

Relation A (A1, A2)
Relation B (B1, B2, *A1)

A
A1

A2

B
B1

B2

Relational conceptual

schema in EER model

R

1

m

FD: B � A

B2
b21

*A1
a11

B1
b11

Relations

R1

R2

A1
a11

A2
a21

a12 a22

b22 a12b21

A
A1

A2

Set AB

B
B1

B2

Network conceptual

schema in Network Graph

FD: B � A

Network Schema

Record Name is A

A1 Character

A2 Character
Record Name is B

B1 Character
B2 Character

Set AB

Owner is A
Member is B

B2

b21

B1

b11

Records

A

B

A1

a11

A2

a21

a12 a22

b22b12

(a) one-to-many cardinality(a) one-to-many cardinality

Object-Oriented

Conceptual schema in UML

A

A1, A2

B

B1, B2

1

m

FD: B � A

Object-Oriented Schema

Class A

 Attribute A1 Char
 Attribute A2 Char
 Attribute A_B set (B)
End
Class B
Attribute B1 Char

Attribute B2 Char
Attribute B_A (A)
End

A2A1OIDA

a21#1

#2 a22a12

a11

Classes

B2B1OIDB

b21#3

#4 b22b12

b11

Stotred OID

#1

#2

Stored_OID

#3, #4

#3, #4

A
A1

A2

B
B1

B2

XML conceptual schema in

DTD Graph

*

XML schema in DTD

<!ELEMENT A(B*)>

<!ATTLIST A1 CDATA #REQUIRED>

<!ATTLIST A2 CDATA #REQUIRED>

<!ELEMENT B EMPTY>

<!ATTLIST B1 CDATA #REQUIRED>

<!ATTLIST B2 CDATA #REQUIRED>

FD: B � A

<A A1=”a11" A2=”a12">

 <B B1="b11">

 <B B1="b12" >

<A A2=”a21" A2=”a22">

 <B B1="b21">

 <B B1="b22" >

XML Docment

Figure 3a Data semantics preservation in legacy databases (1:n Cardinality)

Computer Science & Information Technology (CS & IT) 173

(b) many-to-many cardinality(b) many-to-many cardinality

Network Schema

Record Name is A
A1 Character

A2 Character
Record Name is B
B1 Character

B2 Character
Record Name is AB
Set AAB

Owner is A
Member is AB
Set BAB

Owner is B
Member is AB

A

Set AAB

AB

B
B1

B2

Set BAB

Network conceptual

schema in Network Graph

AB

MVD: A �� B
MVD: B �� A

B2

b21

B1

b11

Records

A

B

A1

a11

A2

a21

a12 a22

b22b12

A1

A2

Relational Schema

Relation A (A1, A2)

Relation B (B1, B2)
Relation AB (*A1, *B1)

A
A1

A2

B
B1

B2

AB

n

m

Relational conceptual

schema in EER model

MVD: A �� B

MVD: B �� A

*B1
b11

B1
b11

*A1
a11

Relations

A

AB

A1
a11

A2
a21

a12 a22

b21

b21

a12

B1

b11

A1

a11
b21a12

B2
b21
b22

XML schema in DTD

<!ELEMENT A(AB*)>

<!ATTLIST A1 CDATA #REQUIRED>

<!ATTLIST A2 CDATA #REQUIRED>

<!ELEMENT AB EMPTY>

<!ATTLIST AB_iderf IDREF #REQUIRED>

<!ELEMENT B EMPTY>

<!ATTLIST B id ID CDATA #REQUIRED>

<!ATTLIST B1 CDATA #REQUIRED>

<!ATTLIST B2 CDATA #REQUIRED>

Object-Oriented Schema

Class A

 Attribute A1 Char
 Attribute A2 Char

 Attribute A_B set (B)

End
Class B

Attribute B1 Char
Attribute B2 Char

Attribute B_A set (A)

Member is B

A

A1, A2

B

B1, B2

n

m

Object-Oriented

Conceptual schema in UML

MVD: A �� B

MVD: B �� A

Classes

A2A1OIDA

a21#1

#2 a22a12

a11

B2B1OIDB

b21#3

#4 b22b12

b11

Stotred OID

#1, #2

#1, #2

Stored_OID

#3, #4

#3, #4

A
A1

A2
B

B1

B2

AB idref

id*

XML conceptual schema in

DTD Graph

MVD: A �� B
MVD: B �� A

XML Docment

<A A1=”a11", A2=”a21">

 <AB idref=”1"></AB>

<A A1=”a12", A2=”a22">

 <AB idref=”1"></AB>

 <B B1="b11" B2=”b12" id=1">

Figure 3b Data semantics preservation in legacy databases (m:n Cardinality)

174 Computer Science & Information Technology (CS & IT)

A

B A1

A3

A1

A2

Relational conceptual

schema in EER model

Relational Schema

Relation A (A1 , A2)

Relation B (*A1 , A3)

ID : B.A1 A.A1

A3
a31

*A1
a11

Relations

A

B

A1
a11

A2
a21

a12 a22

a32a21

B

Set

A
A1

A2

A1

A3

Network conceptual

schema in Network Graph

Network Schema

Record Name is A

A 1 Character

A 2 Character

Record Name is B

A 1 Character

A 3 Character

Set AB

Owner is A

Member is B

ID : B.A1 A.A1

A1

a11

Records

A

B

A1

a11

A2

a21

a12 a22

a21

A3

a31

a32

A

A1 , A2

B

A1 , A3

Object- Oriented

Conceptual schema in UML

Object- Oriented Schema

Class A

 Attribute A1 Char

 Attribute A2 Char

End

Class B subclass of class A

Attribute A1 Char

Attribute A3 Char

End

ID : B.OIDA A.OIDA

A2A1OIDA

a21#1

#2 a22a12

a11

Classes

A1OIDB

#1

#2 a12

a11

A3

a31

a32

B

A
A1

A2

A1

A3

XML conceptual schema in

DTD Graph

XML schema in DTD

<! ELEMENT A(B?)>

<! ATTLIST A1 # REQUIRED>

<! ATTLIST A2 # REQUIRED>

<! ELEMENT B EMPTY>

<! ATTLIST A1 # REQUIRED>

<! ATTLIST A3 # REQUIRED>

ID : B.A1 A.A1

<A A1=”a11 " A2=”a12">

 < B A3="a31 " >

<A A1=”a11 " A2=”a22">

 < B A3="a32 " >

XML document

Figure 3c Data semantics preservation in legacy databases (ISA relationship)

Computer Science & Information Technology (CS & IT) 175

A

B

o

C
A1

A4

A1

A3

A1

A2

Relational conceptual

schema in EER model

Relational Schema

Relation A (A1 , A2)

Relation B (*A1 , A3)

Relation C (*A1 , A4)

A3
a31

*A1
a11

Relations

A

B

A1
a11

A2
a21

a12 a22

a32a21

C

*A1 A4
a11 a41
a21 a42

B

Set AB

C

A
A1

A2

A1

A3

Network conceptual

schema in Network Graph

Network Schema

Record Name is A

A 1 Character

A 2 Character

Record Name is B

A 1 Character

A 3 Character

Record Name is C

A 1 Character

A 4 Character

Set AB

Owner is A

Member is B

Set AC

Owner is A

Member is C

Set AC

Records
A

B

A1

a11

A2

a21

a12 a22

C

A4

a41

a42

A1

a11

a12

*A1 A3
a11 a31
a21 a32

ID : B.A1 A.A1

ID : C.A1 A.A1

ID : B.A1 A.A1

ID : C.A1 A.A1

B1
B A A1

idref
id

Flattened XML conceptual

schema in DTD Graph

ABC

idref
id

Flattened XML Document schema in DTD

<! ELEMENT ROOT (A , AB , B)>

<! ELEMENT A EMPTY >

<! ATTLIST A id ID # REQUIRED >

<! ATTLIST A A 1 CDATA # REQUIRED >

<! ELEMENT B EMPTY >

<! ATTLIST B id ID # REQUIRED >

<! ATTLIST B B 1 CDATA # REQUIRED >

<! ELEMENT AB EMPTY >

<! ATTLIST AB idref 1 IDREF # REQUIRED >

<! ATTLIST AB idref 2 IDREF # REQUIRED >

<! ATTLIST AB C CDATA # REQUIRED >

(b) many-to- many cardinality

MVD : A.id �� B.id

MVD : B.id �� A.id

Flattened XML Document Data

< ROOT >

 < A A1="a11 " id ="1">

 <B B1="b11 " id ="2">

 <A B C="c11 " idref1="1" idref2="2”></AB>

 <A B C="c12 " idref1="2" idref2="1”></AB>

</ ROOT >

B A A1

idref id

Flattened XML conceptual

schema in DTD Graph

Flattened XML Document schema in DTD

<! ELEMENT ROOT (A , B)>

<! ELEMENT A EMPTY >

<! ATTLIST A id ID # REQUIRED >

<! ATTLIST A A 1 CDATA # REQUIRED >

<! ELEMENT B EMPTY >

<! ATTLIST B idref IDREF # REQUIRED >

<! ATTLIST B B 1 CDATA # REQUIRED >

FD : B.iderf � A.id

(a) one-to- many cardinality

Flattened XML Document Data

B1

< ROOT >

 < A A1="a11 " id ="1">

 < B B1="b11 " idref =1">

 < B B1="b12 " idref=1">

</ ROOT >

Figure 4a Data semantics preservation in flattened XML documents (1:n & m:n cardinalities)

176 Computer Science & Information Technology (CS & IT)

< ROOT >

 < A A1="a11 " id ="A1.1">

 < B A1="a11 " idref=A1.1">

</ ROOT >

B A

idref id

Flattened XML conceptual

schema in DTD Graph

(c) isa relationship

A1A1

Flattened XML Document schema in DTD

<! ELEMENT ROOT (A , B)>

<! ELEMENT A EMPTY >

<! ATTLIST A id ID # REQUIRED >

<! ATTLIST A A 1 CDATA # REQUIRED >

<! ELEMENT B EMPTY >

<! ATTLIST B idref IDREF # REQUIRED >

<! ATTLIST B A 1 CDATA # REQUIRED >

ID : B.idref � A.id

A1A C A1

idref

Flattened XML conceptual

schema in DTD Graph

B

idref
id

(d) generalization

A1

Flattened XML Document Data

< ROOT >

 < A A1="a11 " id ="1">

 < A A1="a12 " id ="2">

 <B A1="a 11 " idref=1">

 <C A1="a11 " idref =2"></C>

</ ROOT >

Flattened XML Document schema in DTD

<! ELEMENT ROOT (A,B,C)>

<! ELEMENT A EMPTY >

<! ATTLIST A id ID # REQUIRED >

<! ATTLIST A A1 CDATA # REQUIRED >

<! ELEMENT B EMPTY >

<! ATTLIST B idref IDREF # REQUIRED >

<! ATTLIST B A1 CDATA # REQUIRED >

<! ELEMENT C EMPTY >

<! ATTLIST C idref IDREF # REQUIRED >

<! ATTLIST C A1 CDATA # REQUIRED >

ID : B.idref � A.id

ID : C.idref � A.id

Figure 4b Data semantics preservation in flattened XML documents

(ISA, generalization)

2. RELATED WORK

On data transformation

Shoshani, A.[1] defined logical level approach data conversion by using source and target

schemas to perform data type conversion instead of physical data type conversion. He provided a

general methodology of using logical level approach of downloading source legacy database into

sequential file and uploading them into target legacy database for data transformation.

Lum et al [2] showed how to construct data conversion languages SDDL and TDL to extract and

restrict data from source legacy database into target legacy database.

The above two paper differ from this paper such that they apply sequential file as medium for

legacy databases exchange, but this paper applies flattened XML document as medium for legacy

databases exchange.

Fong and Bloor [3] described mapping navigational semantics of the network schema into a

relational schema before converting data from network database to relational database.

Computer Science & Information Technology (CS & IT) 177

Fong [4] presented a methodology of transforming object-oriented database objects into

Relational database by using SQL Insert statements.

Fong and Shiu [5] designed a Semantic Export Markup Language as a data conversion language

to export component of relational database into XML database.

Fong et al.[6] applied logical level approach for data materialization between relational database

and object-oriented database using sequential file as medium.

On Heterogeneous database

Given huge investment for a company put into heterogeneous databases, it is difficult for

company convert them into homogeneous databases for new applications. Therefore, researchers

have come up with a solution of universal databases that can be accessed as homogeneous

databases by the user [7] . For instance, we can provide an relational interface to non‐relational

database such as Hierarchical, Network, Object‐Oriented and XML [8] .

Hsiao & Kamel [9] offered a solution of multiple-models-and-languages-to-multiple-models-and–

languages mapping to access heterogeneous databases.

Their papers propose a universal database for Hierarchical, Network and Relational databases

while this paper proposes a universal database for Network, Relational, Object-Oriented and

XML databases.

On Universal database

Fong et al. [10] applied universal database system to access universal data warehousing for the

integration of both relational databases and object-oriented databases with star schema and OLAP

functions.

Silverston & Graziano [11] used a universal data model in a diagram to design the conceptual

schema of different legacy data models of any legacy database.

The above papers differ from this paper such that the above paper proposes a universal data

model diagram for universal database conceptual schema while this paper proposes using DTD

Graph in Figure 3 and 4 as conceptual schema for universal database.

On Homogeneous database

Sellis, Lin & Raschid [12] presented a solution to decompose and store the condition elements in

the antecedents of rules such as those used in production rule-based systems in homogeneous

databases environment using relational data model.

This paper differs from the above paper such that it uses flattened XML document environment

for universal database.

On schema translation

Funderburk et al. [13] proposed DTD Graph as XML conceptual schema which is identical to

DTD, but in a graph format.

On Cloud Database

Derrick Harris [14] defines cloud database as databases in virtual machines.

This paper plans to include cloud computing for further research in future.

On Flattened XML document

Fong et al. [15] converted an XML document into Relational database by transforming XML

document into flattened XML document with relational table structure by Extensible Stylesheet

Language Transformation.

Compared with the above references, this paper has 3 uniqueness:

(1) Cover more data model

All other database research paper only involve 2 or 3 data models in the universal database. This

paper involves 4 data models such as Network, relational, object-oriented and XML.

(2) Use cloud platform

178 Computer Science & Information Technology (CS & IT)

The reference papers do not use cloud platform to implement universal database. This paper

performs prototype in cloud platform.

(3) Flattened XML document as middleware

This paper applies flattened XML document as medium to transform legacy databases among

each other which is not done by other research papers.

Above all, this paper extends the work of universal database into an “open” universal database

gateway such that the universal database is not limited to a particular DBMS, but can be any

legacy database of user’s choice. Similarly, OUDG is more user friendly than ODBC because it

requires less programming effort.

3. METHODOLOGY OF OUDG AS ODBC SUPPLEMENT

This paper proposes OUDG as a database middleware to access legacy databases via flattened

XML documents as an universal database as follows:

First Legacy databases � Phase 1: Second Flattened XML documents (universal database)

 � Phase 2:Third Legacy databases

The major functions of OUDG are:

Phase I: Transform first legacy databases into flattened XML documents

Any one of the four first legacy database can be transformed into the flattened XML document as

follows:

Case 1: Transform first legacy relational databases into second flattened XML documents

Firstly, we perform the preprocess of mapping relational schema into flattened XML schema.

Secondly, we perform their correspondent data conversion. The input is a relational database and

the output is an flattened XML document. The system will read relational table according to the

legacy relational schema. In one-to-many data semantic, it will post parent and child relations into

2 table structured sibling XML elements linked with id and idref. In many-to-many data semantic,

it will post 2 relations and their relationship relation into 3 table structured XML sibling elements

linked with idref(s) and id(s). In isa data semantic, it will post superclass and subclass relations

into 2 table structured XML sibling elements linked with id and idref with the same key as shown

in Figure 3 and Figure 4.

Case 2: Transform first XML databases into second flattened XML documents

Firstly, we perform the preprocess of mapping XML schema into flattened XML schema.

Secondly, we perform their correspondent data conversion. The input is an XML database and the

output is a flattened XML document with relational table structure. The system will read XML

document according to the XML schema. In one-to-many data semantic, it will post element and

sub-element into 2 XML sibling elements linked with id and idref. In many-to-many data

semantic, it will post 3 elements linked with id(s) and idref(s) into 3 XML sibling elements linked

with id(s) and idref(s). In isa data semantic, it will post superclass and subclass elements into 2

XML sibling elements linked with id and idref with the same key as shown in Figure 3 and Figure

4.

Case 3: Transform first legacy Object Oriented database into second flattened XML document

Firstly, we perform the preprocess of mapping object-oriented schema into flattened XML

schema. Secondly, we perform their correspondent data conversion. The input is an OODB and

the output is a flattened XML document. The system will read OODB according to OODB

schema. In one-to-many data semantic, it will post object and set of associated objects into 2

XML sibling elements linked with id and idref. In man-to-many data semantic, it will post 2 sets

of associated objects with a common object into 3 XML sibling elements such that a sibling

Computer Science & Information Technology (CS & IT) 179

element with 2 IDREF(s) referring 2 sibling elements with 2 ID(s)). In isa data semantic, it will

post superclass and subclass objects with same OID into 2 XML sibling elements linked with id

and idref with the same key as shown in Figure 3 and Figure 4.

Case 4: Transform first legacy Network databases into second flattened XML documents

Firstly, we perform the preprocess of mapping network schema into flattened XML schema.

Secondly, we perform their correspondent data conversion. The input is a Network

database(NDB) and the output is a table structured flattened XML document. The system will

read NDB according to NDB schema. In one-to-many data semantic, it will post owner and

member records into 2 XML sibling elements linked with id and idref. In many-to-many data

semantic, it will post 2 owners and 1 common member records into 3 XML sibling elements

linked with id(s) and idref(s). In isa data semantic, it will post an owner and a member records

into 2 XML sibling elements linked with id and idref with the same key as shown in Figure 3 and

Figure 4.

Phase II: Transform second flattened XML documents into third legacy databases

In step 2, we map the flattened XML schema into another legacy database schema, followed by

the data transformation of the flattened XML documents into a legacy database according to the

mapped legacy database schema. In this way, each source database data type can be read by the

legacy database schema. Therefore, there is no need for physical data type conversion in this

approach. Therefore, we can post the flattened XML document into a legacy database of

relational, object-oriented, network or XML.

Case 5: Transform second flattened XML documents into third relational databases

Firstly, we perform the preprocess of mapping flattened XML schema into relational schema.

Secondly, we perform their correspondent data conversion. The input is a flattened XML

document and the output is a relational database. The system will read flattened XML document

according to flattened XML document schema. In one-to-many data semantic, it will post 2 XML

sibling elements into parent and child relations. In many-to-many data semantic, it will post 3

XML sibling elements linked with id(s) and idref(s) into 2 parents and 1 child relations. In isa

data semantic, it will post 2 XML sibling elements into superclass relation and sub-class relation

as shown in Figure 3 and Figure 4.

Case 6: Transform second flattened XML documents into third object-oriented databases

Firstly, we perform the preprocess of mapping flattened XML schema into object-oriented

schema. Secondly, we perform their correspondent data conversion. The input is a flattened XML

document and the output is an object-oriented database. The system will read flattened XML

document according to flattened XML document schema. In one-to-many data semantic, it will

post 2 XML sibling elements into 2 associated objects with OID and Stored OID. In many-to-

many data semantic, it will post 3 XML sibling elements linked with id(s) and idref(s) into 3

associated objects. In isa data semantic, it will post 2 XML sibling elements into 2 superclass and

sub-class objects as shown in Figure 3 and Figure 4.

Case 7 Transform second flattened XML documents into third network databases:

Firstly, we perform the preprocess of mapping flattened XML schema into network schema.

Secondly, we perform their correspondent data conversion.

The input is a flattened XML document and the output is a network database. The system will

read flattened XML document according to flattened XML document schema. In one-to-many

data semantic, it will post 2 XML sibling elements into 2 owner and member records. In many-to-

many data semantic, it will post 3 XML sibling elements linked with id(s) and idref(s) into 2

owners linked with 1 member record with the same key. In isa data semantic, it will post 2 XML

180 Computer Science & Information Technology (CS & IT)

sibling elements into 2 owner and member record with the same key as shown in Figure 3 and

Figure 4.

Case 8: Transform second flattened XML documents into third legacy XML databases

Firstly, we perform the preprocess of mapping flattened XML schema into XML schema.

Secondly, we perform their correspondent data conversion.

The input is a flattened XML document and the output is an XML document. The system will

read flattened XML documents according to flattened XML documents schema. In one-to-many

data semantic, it will post 2 XML sibling elements into 2 XML element and sub-elements. In

many-to-many data semantic, it will post 3 XML sibling elements linked with id(s) and idref(s)

into 2 pairs of XML elements linked with same sub-element. In isa data semantic, it will post 2

XML sibling elements with the same key into XML element and sub-elements with the same key

as shown in Figure 3 and Figure 4.

4. CASE STUDY

A logistic system records the customer shipment information including which orders are being

packed and what the packing information is. Based on the XML schema below, there are three

intermediate independent entities: PL_INFORMAION recording the general information of the

shipment, PL_LINE_INFORMATION storing the packing information ― particularly

information about the BOXES ― and ORDER_INFORMATION storing the information of

orders such as the product information. A many-to-many relationship between

ORDER_INFORMATION and PL_LINE_DETAIL must be resolved early in the modeling

process to eliminate repeating information when representing PL_INFORMATION or

ORDER_INFORMATION (MySQL 2013). The strategy for resolving many-to-many

relationship[s] is to replace the relationship with two one-to-many cardinality with an association

entity and then relate the two original entities to the association entity. As a result, these two one-

to-many relationships are between PL_LINE_INFORMATION and PL_LINE_DETAIL, and

between ORDER_INFORMATION and PL_LINE_DETAIL. Similarly, the ORDER_INFOR

MATION can be divided into BulkOrder and CustomerOrder in generalization as shown in

Figure 6.

In Figure 6, there are six relations in relational database. Each table has its primary key and

foreign key. Their data dependencies are such that each foreign key determines its referred

primary key in functional dependency (FD) in one-to-many cardinality with foreign key on the

“many” side, and subclass foreign key is a subset of its referred primary key in inclusion

dependency (ID). For relations in many-to-many cardinality, their primary keys are in multi-

valued dependencies(MVD) to each other as follows:

FD: PL_Line_Information.PL_Information_Seqno � PL_Information.PL_Information_Seqno

ID: Bulk_Order.BulkOrder.Order_Number Order_Information.Order_Number

ID: TailorMadeOrder.Order_Number Order_Information.Order_Number

MVD: PL_Line_Information.PL_Information_Seqno �� Order_Information.Order_Number

MVD: Order_Information.Order_Number �� PL_Line_Information.PL_Information_Seqno

In Figure 7, the relations are transformed into flattened XML document. The input relational

conceptual schema is Extended Entity Relationship model(Chen, 1976). We map input relational

schema into an flattened XML OUDG schema with relational structure in two levels tree. Notice

that the second level elements (under root elements) are linked together using idref referring to id,

which is similar to foreign key referring to primary key. There are seven elements. The second

level elements has id(s) and/or idref(s). Their data dependencies are such that each idref

Computer Science & Information Technology (CS & IT) 181

determines its referred id in FD for one-to-many cardinality, and each subclass idref is a subset of

its superclass id in ID. For elements in many-to-many cardinality, their id(s) are in MVD as

follows:

FD: idref1 � id1

ID: idref3 id3

MVD: id2 �� id3

MVD: id3 �� id2

In Figure 8, the flattened XML document is transformed into XML document. Elements

Pl_information and Pl_line_information are in element and sub-element 1:n association. Elements

Pl_line_information and Order_information are in m:n association through element

Pl_line_detail linked by pairs of idref referring to id. Elements Order_information and

Bulk_Order are in isa association. Elements Order_information and TailorMadeOrder are also in

isa association. Their data dependencies are such that each sub-element can determine its element

in FD. Each sub-class key is a subset of its superclass key in ID. Two one-to-many cardinality

with the same element on the “many” side is equivalent to a many-to-many cardinality of the two

“one” side elements in MVD as follows:

FD: PL_Line_Information.PL_Information_Seqno � PL_Information.PL_Information_Seqno

ID: BulkOrder.TechnicalOrderNo Order_Information.Order_Seqno

ID: TailorMadeOrder.CustomerOrderNo Order_Information.Order_Seqno

MVD: PL_Line_Information.PL_Information_Seqno �� Order_Information.Order_Seqno

MVD: Order_Information.Order_Seqno �� PL_Line_Information.PL_Information_Seqno

In Figure 9, the flattened XML document is transformed into Object-Oriented database. It shows

the mapping of flattened XML schema into UML as object-oriented conceptual schema. There

are six classes. Each class has its OID (object identity), which is similar to primary key in

relational schema, and Stored OID, which is similar to foreign key in relational schema. Their

data dependencies are such that each Stored OID key determines its referred OID in FD, and each

subclass OID is a subset of its superclass OID in ID. The class PL_Informationa nd class

PL_Line_Information are in 1:n association in FD. Classes PL_line_Informaton and class

Order_Information are in m:n association through class PL_Line_Detail. Subclass BulkOrder and

subclass TailorMadeOrder are in generalization under same superclass Order_Information in ID

as follows:

FD: PL_Line_Information.Stored_OID � PL_Information.OID

ID: Bulk_Order.OID Order_Information.OID

ID: TailorMadeOrder.OID Order_Information.OID

MVD: PL_Line_Information.OID �� Order_Information.OID

MVD: Order_Information.OID �� PL_Line_Information.OID

In Figure 10, flattened XML document is transformed into Network database. Record

Pl_informations and record Order_information are under network DBMS as first records for

database navigation access path. The path can go from record Pl_information to

Pl_line_information in owner and member record in 1:n relationship in FD. Records

Pl_line_information (owner), Order_information(owner) and Pl_line_detail (member) are in flex

structure such that records Pl_line_information and Order_information they are in m:n

relationship in MVD. Records Order_information and BulkOrder are in isa relationship since they

have same key value in ID. Similarly, records Order_information and TailorMadeOrder are in isa

relationship due to same key value in ID. The set records are pointers only. Their data

dependencies are as follows:

FD: PL_Line_Information.PL_Information_Seqno � PL_Information.PL_Information_Seqno

ID: Bulk_Order.TechnicalOrderNo Order_Information.OrderSeqno

ID: TailorMadeOrder.CustomerOrderNo Order_Information.OrderSeqno

MVD: PL_Line_Information.PL_Information_Seqno �� Order_Information.OrderSeqno

182 Computer Science & Information Technology (CS & IT)

MVD: Order_Information.OrderSeqno �� PL_Line_Information.PL_Information_Seqno

Papers in this format must not exceed twenty (20) pages in length. Papers should be submitted to

the secretary AIRCC. Papers for initial consideration may be submitted in either .doc or .pdf

format. Final, camera-ready versions should take into account referees’ suggested amendments.

PL_INFORMATION

PL_LINE_INFORMATION

PL_LINE_DETAIL

ORDER_INFORMATION

BulkOrder TailorMadeOrder

Pl_information_seqno

Pl_line_information_seqno

Order_number

1..1

1:m
1:m 1:m

Order_number Order_number

Mapped Object-Oriented conceptual schema

Computer Science & Information Technology (CS & IT) 183

5. CONCLUSION

Since relational database is the most user friendly legacy database, and XML database is the most

portable database for information highway on the Internet. In this project, we propose a Flattened

XML database as universal database such that it is most user friendly and portable as a database

middleware for all legacy databases.

The uniqueness of this paper are:

(1) Openness of an universal database: The reason we choose flattened XML document is due to

its openness, and DBMS independence. All other data models are DBMS dependent.

Nevertheless, users can use OUDG to access any legacy database via flattened XML documents

on the Internet by Internet Explorer without programming.

(2) Recovery of legacy database: Since flattened XML document is a replicate legacy database, it

can be used to recover any legacy database whenever the production legacy database is down. As

a result, replicate XML document can be parallel processing with legacy database in non-stop

computing.

(3) Heterogeneous database integration for data warehousing: By transforming all in-house legacy

databases into one legacy database as the data cube, companies can use OUDG to integrated their

legacy databases into a data warehousing for decision support system.

(4) Portability of Flattened XML document as Universal database: The OUDG solution is not

limited to using a particular DBMS, but allows users of any legacy database access other legacy

database.

In summary, the proposed OUDG unites all legacy databases data models into flattened XML

schema. The portability of the proposed flattened XML document can be transferred into any

open platform. The data conversion methodology of this OUDG is to download the raw data of

source database into flattened XML document using source database schema, and upload the

flattened XML document into target database using translated target database schema, which is a

logical level approach, and which can avoid physical data type conversion. Therefore, the

methodology can transform any legacy database into any other legacy database. The reason of

using flattened XML document as medium is to reduce the number of programs for the data

conversion; otherwise, we need 4 * 4 = 16 programs, instead of the current 4 + 4 = 8 programs to

do the data conversion for the four legacy database models: relational, network, object-oriented

and XML. Above all, all legacy databases can be transformed into each other via flattened XML

documents for data access in the same way as computers connect to each other via computer

network for information retrieval.

REFERENCES

[1] Shoshani, A., (1975) “A Logical-Level Approach to Data Base Conversion”, ACM SGMOD

International Conference on Management of Data, pp.112-122.

[2] Lum, V.Y., Shu N.C. & Housel B.C. (1976) “A General Methodology for Data Conversion and

Restructuring”, IBM Journal of research and development, Volume 20, Issue 5, pp.483-497.

[3] Fong, J.& Bloor C. (1994) “Data Conversion Rules from Network to Relational Databases”,

Information and Software Technology, Volume. 36 No. 3, pp. 141-154.

[4] Fong, J. (1997) “Converting Relational to Object-Oriented Databases”, SIGMOD RECORD, Volume

26, Number 1, pp53-58.

[5] Fong, J. & Shiu, H. (2012) “An interpreter approach for exporting relational data into XML

documents with Structured Export Markup Language”, Journal of Database Management, volume 23,

issue 1.

[6] Fong, J., Pang, R., Fong, A., Pang, F. & Poon, K. (2003) “Concurrent data materialization for object-

relational database with semantic metadata”, International Journal of Software Engineering and

Knowledge Engineering, Volume 13, Number 3, pp.257-291.

[7] Fong, J. & Huang, S. (1999) “Architecture of a Universal Database: A Frame Model Approach”,

International Journal of Cooperative Information Systems, Volume 8, Number. 1, pp. 47-82.

[8] Fong, J. (1996) “Adding Relational Interface to Non-relational Database",IEEE Software, pp. 89-97.

184 Computer Science & Information Technology (CS & IT)

[9] Hsiao, D. & Kamel, M. (1989) “Heterogeneous Databases: Proliferations, Issues, and Solutions”,

IEEE Transactions on Knowledge and Data Engineering, Voumn 1, No. Pp.45-62.

[10] Fong, J., Li, Q. & Huang, S. (2003) “Universal Data Warehousing Based on a Meta-Data Modeling

Approach”, International Journal of Cooperative Information Systems, Volume 12, Number 3,

pp.325-363.

[11] Silverston, L. & Graziano, K.(2013) www.360doc.com/content/08/0830/01/1032_1590731.shtml

[12] Sellis, T., Lin, C. & Raschid, L. (1993) “Coupling Production Systems and Database Systems: A

Homogeneous Approach”, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, VOL. 5, NO.

[13] Funderburk J. (2002) “XTABLES: Bridging Relational Technology and XML”, IBM Systems

Journal, Vol 41, No. 4, PP 616 –641.

[14] Harris, D. (2012) “cloud-databases-101-who-builds-em-and-what-they-do”, GIGAOM,

http://gigaom.com/cloud/cloud-databases-101-who-builds-em-and-what-they-do/

[15] Fong, J., Shiu, H. & Wong, J. (2009) “Methodology for data conversion from XML documents to

relations using Extensible Stylesheet Language Transformation”, International Journal of Software

Engineering and Knowledge Engineering,Volume 19, Number 2, pp. 249-281

AUTHORS

Dr Joseph Fong is an Associate Professor at City University of Hong Kong. He is a

fellow of Hong Kong Computer Society, the founder chairman of the Hong Kong

Computer Society Database Special Interest Group, and the honorable founder

chairman of Hong Kong Web Society and International Hybrid Learning Society. Fong

had worked in the industry in US for 11 years, and in Hong Kong as an academician

since 1988. His research interests are in database, data warehousing, data mining, XML

and eLearning. His above 100 publications include SCI Journals, Conferences, Patent

(US), books, and an authored text book on "Information Systems Reengineering,

Integration and normalization" 3rd edition by Springer in 2015. He had been program

manager of M.Sc. of Staffordshire University for a decade and teaches Data

warehousing and data mining, Data Engineering, and Database Systems. Dr. Fong is a former editorial

board member of International Journal of Web Information Systems.

Mr Wong Ting Yan, Kenneth. has been graduated from the first degree, Computer

Engineering in Electronic Engineering Department in City University of Hong Kong at

2002, and Master of Science in Information Engineering in Chinese University of Hong

Kong at 2008, and Degree of Master of Philosophy in Computer Science in City

University of Hong Kong in 2014. He has worked in several educational institutes for

almost 10 years, included primary school, secondary schools, and has experienced to

work as teaching assistant and research associate in Open university of Hong Kong and

City University of Hong Kong respectively.

