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ABSTRACT 

 
This paper presents a new look on the well-known nonparametric regression estimator – the 

Nadaraya-Watson kernel estimator. Though it was invented 50 years ago it still being applied in 

many fields. After these yearsfoundations of uncertainty theory – interval analysis – are joined 

with this estimator. The paper presents the background of Nadaraya-Watson kernel estimator 

together with the basis of interval analysis and shows the interval Nadaraya-Watson kernel 

estimator.  
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1. INTRODUCTION 

 
The main difference between the mathematical and physical interpretation of a number is that 

from the mathematical point of view the number is a well-defined point in some space while in 

physics number (a value) cannot be measured without nonzero level of the uncertainty: in the 

macro world it is the limitation of our eye precision and the rule precision, for example during 

measuring the apple diameter, and in the micro world it was well described by Werner 

Heisenberg and his uncertainty principle. 

 

For a long time scientists have been trying to describe the uncertainty in the mathematical way 

and applying it in the data processing. As the most famous approaches fuzzy sets [1] (with fuzzy 

numbers [2]) rough sets[3] or interval analysis [4][5] should be mentioned. 

 

The main motivation of the research presented in this paper is the 50
th
 anniversary of very simple 

nonparametric regression function estimator – the Nadaraya-Watson kernel estimator. It was 

invented independently by Nadaraya [6]  and Watson [7] in 1964. As the aim of the research the 

application of interval arithmetic into this method of regression analysis was stated. The title of 

the paper connects directly to the Nadaraya paper. 

 

The paper is organised as follows: it starts from the short reminder of the Nadaraya-Watson 

kernel estimator and the brief overview of the interval analysis. Afterwards, the interval approach 

to kernel regression is presented and followed by the results of experiments on the synthetic data. 

The paper ends with some final conclusions. 
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2. KERNEL REGRESSION 

 
Some of the commonly known examples of the nonparametric regression estimators are kernel 

estimators. This group of methods is developed from the solution of nonparametric estimation of 

the density function. The Nadaraya-Watson kernel estimator is the simplest kernel regression 

estimator [6][7]. For the one dimensional case it is given by the equation: 

 

����� = ∑ �	
 ��
��� ��	��∑ 
 ��
��� ��	��  

 

where pairs (xi,yi) are known, K is a kernel function and h is so called smoothing parameter. This 

estimator can be explained as the kind of moving average: the kernel function K is responsible for 

the shape of weights of averaged values and the smoothing parameter defines the range of input 

values. 

 

In the Table 1. there are presented most popular kernel functions (I is an indicator function). As 

we can see only one of them, the Gaussian, has the infinite domain what means that it takes into 

consideration (estimation of the value at x) all given points, even very distant. Other kernels 

narrow the neighbourhood of x to the value of the smoothing parameter h.In the onedimensional 

case only pairs from the training set, which first entries belong to the interval [� − ℎ, � + ℎ] are 

averaged. 
 

Table 1.  Most popular kernel functions 

 

Kernel function Equation 

Uniform 
��� = 0.5 ��−1 < � < 1� 

Triangular 
��� = �1 − |�|� ��−1 < � < 1� 

Epanechnikov 
��� = 0.75�1 − �#���−1 < � < 1� 

Biweight 
��� = 0.9375�1 − �#�#��−1 < � < 1� 

Gaussian 
��� = �2'�
(.)exp �−�#/2� 

 

In practice the selection of kernel function generally influences less than the selection of the 

smoothing parameter. The less complicated method of estimating its value is approximation of 

the Mean Integrated Square root Error (MISE). Its final results – optimal values of h – can be 

evaluated as follows: ℎ( = 1.06 /01
(.# 

 

where /0is the standard deviation of arguments (x), or as follows: 

 ℎ( = 1.06 min{ 0.74 ⋅ �8, /0}1
(.# 

 

where �8 is an interquartile range of x. Details of these calculations can be found in [8].More 

advanced methods of estimating h can be also found in [9][10][11][12][13]. 

 

3. INTERVAL COMPUTATIONS 

 
Interval arithmetic is the branch of mathematics where the number is represented as the interval, 

due to the uncertainty of the measurement that brought the number. As the first use of this kind of 

number representation the Archimedes approximation of the π can be recalled: Archimedes stated 

that 223/71 < π < 22/7. 
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If two interval numbers are considered then it is interesting how the sum, product or other 

arithmetical operation should be defined, to give the interpretable result. Next subsection brings 

definitions of most basic interval operations and the following one shows the problem of interval 

computations. 

 

3.1. Definition of the Interval Arithmetic Operation 
 

If the non-exactness of the number is represented as its lower and upper bound it is necessary to 

provide new methods of performing calculations on interval numbers. For two interval numbers X 

and Y their sum must take into consideration all possible values from two intervals as follows: 
 : + ; = {� + �: � ∈ :, � ∈ ;} 
 

This means that sum of two intervals is the set of all possible results of sum of numbers, coming 

from each particular interval. In the similar way the following simple arithmetic operations may 

be defined, the difference: 
 : − ; = {� − �: � ∈ :, � ∈ ;} 

the product: : ⋅ ; = {� ⋅ �: � ∈ :, � ∈ ;} 

and the quotient: :/; = {�/�: � ∈ :, � ∈ ;} 

 

The last operation requires to assure that 0 ∉ ;. 
 

All operations become less complicated to perform when we just consider their bounds. 

Assuming that the interval X is the range [:, :](: ≤ :) and interval Y is the range [;, ;](; ≤ ;) 

we can write simply that: : + ; = [: + ;, : + ;] 
 

The similar way of defining the subtraction leads to the following formula: 
 : − ; = [: − ;, : − ;] 
 

which can be derived from the dependence: 
 : − ; = : + �−;� 
 

Situation becomes a little more complicated when the product of two intervals is taken into 

consideration. Due to conditions of signs of lower and upper bounds of intervals the bounds of the 

result of the operation take values as it is presented in the Table 2. 
 

Table 2.  Definition of product of two intervals. 

 

Case : ⋅ ; : ⋅ ; 0 ≤ : and 0 ≤ ; : ⋅ ; : ⋅ ; : < 0 < : and 0 ≤ ; : ⋅ ; : ⋅ ; : ≤ 0 and 0 ≤ ; : ⋅ ; : ⋅ ; 0 ≤ : and ; < 0 < ; : ⋅ ; : ⋅ ; : ≤ 0 and ; < 0 < ; : ⋅ ; : ⋅ ; 0 ≤ : and ; ≤ 0 : ⋅ ; : ⋅ ; 
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: < 0 < : and ; ≤ 0 : ⋅ ; : ⋅ ; : ≤ 0 and ; ≤ 0 : ⋅ ; : ⋅ ; : < 0 < : and ; < 0 < ; min {: ⋅ ;, : ⋅ ;} max {: ⋅ ;, : ⋅ ;} 

 

Definition of division can be obtained from the product of inversion of the second argument, 

assuming again 0 ∉Y: 
 1/; = [1/;, 1/;] 
and :/; = : ⋅ �1/;� 
 

3.2. Problems of the Interval Arithmetic Operations 
 

One of the problems of interval computations is that we cannot assume two expressions in the 

real arithmetic to be equivalent in the sense of interval analysis. This will be shown on the 

following example. Let us consider the following formula in the ordinary (real) arithmetic: 
 1 + AB = B + AB  

 

Both sides of this formula are equivalent as long as the assumption of a ≠ 0 is fulfilled. Now let 

us set a =[3, 5] and b = [7, 10] and calculate both sides with the interval arithmetic: 
 C = 1 + [7,10][3, 5] = [1, 1] + [7, 10] ⋅ 1D�) , �EF = [1,1] + G75 , 103 H = G125 , 133 H = [2.4,4. �3�] 

8 = [3,5] + [7,10][3, 5] = [10,15][3, 5] = [10,15] ⋅ 1D�) , �EF = G105 , 153 H = [2,5] 
C ≠ 8 

 

Although both expressions are equivalent in the real arithmetic it occurs that they are not in the 

interval sense. This difference is caused in general by the phenomenon of interval dependency. 

When we have the interval a in the nominator and the denominator of the fraction has the same 

value from the same interval, in calculation they are treated as independent. It becomes more 

apparent when we compare the result of squaring interval number. 

 

From the origin of the idea of interval computation we have the following definition of the square 

function: ��:� = {�#: � ∈ :} 

This can be expanded as: 

��:� =
JKL
KMD:#, :#F                            0 ≤ :D:#, :#F : ≤ 0         D0, max N:#, :#OF : < 0 < :

P 
If we are interested in calculating [-2, 2]

2
 we obtain the interval [0, 4] but if we expand [-2, 2]

2
 as 

[-2, 2]⋅ [-2, 2] it will give an interval [-4, 4]. In the first approach an interval is calculated as the 
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set of all possible squares of values from the given SINGLE input. In the second one – all 

possible values of product of TWO values from the interval are determined. 
 

4. KERNEL INTERVAL REGRESSION 
 

The first approach of interval kernel regression is to apply the formula from the section 2. of the 

paper without any transformation. From the other side we know, that formulas that are equal in 

the ordinary real calculation may give different results when applied for interval numbers. So it is 

worth to transform the original Nadaraya-Watson kernel regression equation and compare its 

interval results on the same interval data. 
 

Let us consider the equivalent formula of Nadaraya-Watson kernel estimator, equivalent in the 

domain of real numbers. 
 

����� = ∑ �	
 ��
��� ��	��∑ 
 ��
��� ��	�� = Q �	 
 ��
��� �∑ 
 ��
�R� ��S��
�

	��  

5. EXPERIMENTS 
 

Experiments were performed on several artificial datasets, where the estimated function was 

given but there was a random noise, with the zero mean values,  added to each function value.The 

standard deviation of the noise and specification of all datasets are presented in the Table 3. The 

first two sets come from [14] and the rest from [15]. 
 

Table 3. Specification of used datasets. 

 

Dataset T U V 1 [−';  '] ���� = X�YZ[�\]  0.15 2 [0; 1] ���� = 0.3[sin �5� − 3�] √1.5 3 [−2; 2] ���� = � + 2X
�`�\
 0.4 4 [−2; 2] ���� = sin 2� +  2X
�`�\

 0.3 5 [−2; 2] ���� =  0.3X
a��b��\ + 0.7X
�`��
��\
 0.1 6 [−2; 2] ���� = 0.4� + 1 0.15 

 

Each dataset contained 101 observations, distributed uniformly in the domain. This 101 pairs of 

observations were recalculated into 201 pairs, which contained original 101 as pairs of interval 

numbers with their lower and upper bounds equal and 100 new pairs with typically interval 

numbers whose lower and upper bounds were defined as follows: 
 

Table 4.  Transformation of real pairs into interval. 
 

Domain Pairs 

real {���, ���, ��#, �#�, ��E, �E�, … , ���(�, ��(��} 

interval {�[��, �#], [��, �#]�, �[�#, �E], [�#, �E]�, … , �[��((, ��(�], [��((, ��(�]�} 
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Two versions of Nadaraya-Watson kernel estimator were used: the simple (NW1) and the 

modified, from the section 4 (NW2). As the h estimator the equation basing on interquartile range 

was used. 

 
For the purpose of estimators evaluations the prediction of values in original (non-interval) 101 

points was taken into consideration. As the regression error Root Mean Squared Error was used, 

which formula is as follows: 

8def = g11 Q��0	 − �	�#�
	��  

6. RESULTS 

 
Twelve experiments were performed (six datasets on two versions of Nadaraya-Watson interval 

kernel estimator). On the Figure 1. their results are presented. Points are the noised datasets, black 

points marked with × are the result of standard Nadaraya-Watson estimator and red rectangles 

present interval output of the kernel regression. Also the original dependence is slightly visible as 

the black line. The interval output of the interval regressor is shown as the vertical bar. 

 

 
 

Figure 1. NW1 (left) and NW2 (right) results for dataset #1. 

  

 

Figure 2. NW1 (left) and NW2 (right) results for dataset #2. 
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Figure 3. NW1 (left) and NW2 (right) results for dataset #3. 
 

  

Figure 4. NW1 (left) and NW2 (right) results for dataset #4. 
 

  

 

Figure 5. NW1 (left) and NW2 (right) results for dataset #5. 

 

  

 

Figure 6. NW1 (left) and NW2 (right) results for dataset #1. 
 



52 Computer Science & Information Technology (CS & IT)  

 

The qualitative evaluation of three models of kernel regression is presented in the Table 5. For 

standard Nadraya-Watson regression (column marked as NW) a normal (real) RMSE error is 

presented, while for other two models their interval error is presented. 
 

Table 5.  Comparison of three regression models. 

 

Dataset NW NW1 NW2 1 0.17134 [0.13636;  0.21691] [0.13075;  0.22187] 2 0.12390 [0.089199;  0.16802] [0.088208;  0.16954] 3 0.45991 [0.39968;   0.54332] [0.38513;  0.55361] 4 0.41109 [0.35302;  0.4886] [0.34866;  0.49308] 5 0.12824 [0.11465;  0.14434] [0.10982;  0.15063] 6 0.14425 [0.095705;  0.20777] [0.090103;  0.21337] 
 

On Figures 1 to 6 we can see that in most of cases (excluding NW1 model for datasets 1 and 5) 

the interval version of Nadaraya-Watson kernel estimator covers the results of its original version. 

It means that the value from the original estimator belongs to the interval returned by the interval 

estimator. 
 

For both of interval estimators the final regression error also contains the value of the error of the 

non-interval model. It can be explained very simply with the Figures – as interval outputs are 

“wider” than the real outputs of the estimator it causes that one of the bounds is closer to the 

original (input) value and the other is further. 
 

Another interesting remark is that the error of the NW2 model is wider than NW1 and is its 

superset: 8def�jk1� ⊂ 8def�jk2� 
 

7. CONCLUSIONS 
 
This paper presents the new approach on the 50 years old Nadaraya-Watson kernel estimator. The 

novelty is the combination of the kernel estimator and the interval arithmetic. Due to the 

phenomenon of interval dependency two versions of this kernel estimator in the interval approach 

were taken into consideration. Application of any of two modifications gives the opportunity to 

evaluate the level of the uncertainty of the value estimated with the non-interval analysis. 
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