
David C. Wyld et al. (Eds) : CST, ITCS, JSE, SIP, ARIA, DMS - 2014

pp. 183–197, 2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.4118

EVALUATION OF THE SOFTWARE

ARCHITECTURE STYLES FROM

MAINTAINABILITY VIEWPOINT

Gholamreza ShahMohammadi
1

1
Department of Information Thechnology,

Olum Entezami University-Amin, Tehran, Iran
shah_mohammadi@yahoo.co.uk

ABSTRACT

In the process of software architecture design, different decisions are made that have system-

wide impact. An important decision of design stage is the selection of a suitable software

architecture style. Lack of investigation on the quantitative impact of architecture styles on

software quality attributes is the main problem in using such styles. So, the use of architecture

styles in designing is based on the intuition of software developers. The aim of this research is

to quantify the impacts of architecture styles on software maintainability. In this study,

architecture styles are evaluated based on coupling, complexity and cohesion metrics and

ranked by analytic hierarchy process from maintainability viewpoint. The main contribution of

this paper is quantification and ranking of software architecture styles from the perspective of

maintainability quality attribute at stage of architectural style selection.

KEYWORDS

Maintainability Evaluation, Software Architecture, Architecture Style, Coupling, Complexity,

Cohesion

1. INTRODUCTION

Functionality may be achieved using a number of possible structures [1], so software architecture

styles (SASs) are selected based on the amount of their support from quality attributes. SASs

present models to solve the problem of designing the software architecture in a way that each

model describes its components, responsibilities of the components and the way they cooperate

[2]. Architectural decisions made early in the design process are a critical factor in the successful

development of the system. In particular, the selection of an appropriate architectural style has a

significant impact on various system quality attributes [3]. Since quantitative impacts of SASs on

quality attributes have not been studied so far [4], their applications are not systematic [5]. In

other words, the current use of SASs in design is ad-hoc and based on the intuition of software

developers.

A method has been shown in [6], to map an architectural style into a relational model that can be

checked for various style properties such as consistency of style. In [7], two graph-based

approaches have been shown and compared to the specification and modeling of dynamic

software architectures. The impact of a distributed software system’s architectural style on the

184 Computer Science & Information Technology (CS & IT)

system’s energy consumption has been estimated in [3]. A method for specifying the relation

between six SASs and quality attributes such as maintainability has been proposed in [8]. The

relationship between the quality attributes, design principles and some SASs has been specified in

[8] using a tree-based framework. In [4], the impacts of SASs on quality attributes are determined

based on the description of style in [2]. The methods offered in [4] and [8] are not able to

determine the amount of style support from quality attributes, do not offer quantitative results

about their maintainability, and are not precise. SASs are evaluated in [9] from maintainability

viewpoint based on the scenario-based evaluation method that is less precise, less reliable and less

analyzable as compared to the measurement-based evaluation method utilized in this paper.

In [10], the performance of three SASs has been investigated through simulation-based evaluation

method. Implicit/invocation style has been verified in [11], by model checking method.

In this study, the quantitative impact of SASs on software maintainability, one of the important

quality attributes required by all software, is determined based on the measurement-based

evaluation of SASs. The SASs evaluated include Repository (PRS), Blackboard (BKB), Pipe and

Filter (P/F), Layered (LYD), Implicit/Invocation (I/I), Client/Server(C/S), Broker (BRK) and

Object-Oriented (OO), which have been introduced in [2], [12].

Software architecture evaluation methods include: 1) scenario-based evaluation, 2) simulation-

based evaluation, 3) measurement-based evaluation and 4) mathematic model-based evaluation.

Measurement-based evaluation method uses metrics to measure software architecture. Metrics

evaluate internal attributes of software (e.g. coupling). External attributes (e.g. maintainability)

reflect those properties that are desirable for the software user and usually are evaluated by

internal attributes. It is believed that there is a relationship between internal and external quality

attributes. This relationship is based on theoretical models and empirical study [13], [14]. There is

a general agreement in software community that modularity has an influence on external

attributes such as maintainability [15]. Therefore, in this paper, we use coupling, complexity and

cohesion metrics to quantify the impact of SASs on software maintainability. These metrics are

essential in evaluation of software design quality and their effects on maintainability have been

extensively investigated [15]-[18].

The advantage of measurement-based evaluation as compared to scenario-based evaluation is that

the evaluation would be easier and more precise, if there are appropriate metrics. In addition, it

does not have the problems of scenario-based evaluation, namely the dependency of the results on

the scenarios used, and extensive participation of the expert. As a result, the problem is evaluated

more comprehensively.

Multi-criteria decision-making methods are used in the ranking problem of SASs. These methods

are in three categories: 1) scoring, 2) compromise and 3) concordance [19]. Analytic hierarchy

process (AHP) [20] is one of the most comprehensive multi-criteria decision making methods. It

structures the problem as a hierarchy and provides a means of decomposing the problem into a

hierarchy of sub problems that can more easily be comprehended and subjectively evaluated.

AHP reflects the way people think and behave. It also considers different quantitative and

qualitative criteria in the problem and provides sensitivity analysis on the criteria and sub-criteria.

The AHP has been proven a theoretically sound, market-tested and accepted methodology.

In this paper, to rank SASs based on the results of measurement-based evaluation of SASs, AHP

method is used.

This paper is structured as follows: Section 2 discusses software maintainability and its

measurement metrics. Section 3 explains the quantitative measurement of SASs. Section 4 deals

with the ranking of SASs. Finally, Section 5 presents the conclusion.

Computer Science & Information Technology (CS & IT) 185

2. SOFTWARE MAINTAINABILITY AND ITS MEASUREMENT METRICS

The main objective of any software is to offer desired services according to the predetermined

quality level. There is a strong connection between many quality attributes and the software

architecture of the software system. The architecture defines the overall potential that a software

system possesses to fulfil certain quality attributes. Software are often redesigned not for the

deficiency in the functionality, but due to difficulty in maintenance, port or scale [21].

Maintainability is the capability of the software product to be modified [22]. Modifications may

include corrections, improvements or adaptations of the software to changes in the environment

and in the requirements and functional specifications. The ease of software correction is

determined through: 1) analyzability, 2) changeability, (3) stability and (4) testability [22].

A close look at software maintainability attributes reveals that provision of each characteristic

depends on the amount of modularity of software design, design with low coupling among

modules, low complexity of the modules and high cohesion of modules. Therefore, the less is the

amount of coupling and complexity of the components and the more their cohesion, the easier

will be the analyzability, changeability, stability and testability of the software. Various

researches emphasize the impact of complexity, cohesion of components and coupling among

components metrics on software maintainability [15]-[18].

2.1. Coupling Metric

High interaction of modules makes the understanding and modification of the modules more

difficult [15]. The more independent the components, the easier their understanding, modification

and maintainability [16]. Coupling is a complex concept that has been categorized by Yourdon

and Constantine [23] as: 1) Data coupling, 2) Stamp coupling, 3) Control coupling, 4) Shared

coupling and 5) Content coupling.

In this work, we generalize the “coupling among modules” concept to the coupling among

software architecture components and use it to measure the amount of coupling of SASs.

Components of SASs investigated in this work have three coupling types: data, stamp and shared

quantified based on Table 1. In [24] also consecutive numeric values from 1 to 5 were used and

the basis of such assignment was the experience from some software systems

Table 1.Type of Components Coupling

Row Coupling type Symbol Weight

1 Data w1 1

2 Stamp w2 2

3 Common w3 4

designs. Regarding the coupling metric, SASs are investigated in terms of the type of coupling

among the components and the number of components involved in the coupling. The more the

strength of coupling among components and the more the number of components involved in the

coupling, the less the understandability, correction and maintainability of the components [15].

To measure the coupling value of any SAS, (1) is used that is Euclidean norm, where n is the

number of style components, SCP is the amount of SAS coupling and CCPi is the amount of

coupling of the i-th component. CCPi is computed by (2), where NCTj is the number of type j

couplings, wj is the weight of the corresponding coupling type and p is the number of coupling of

the component i:

186 Computer Science & Information Technology (CS & IT)

 (1)

 (2)

2.2. Complexity Metric

Complexity value of SASs is computed by (3) where, SCM is the complexity of SAS, n is the

number of style components and CCMi is the amount of complexity of the i-th component. CCMi

is computed by (4), using the module evaluation metric of Shepperd et al [25], where fin(i) is the

fan-in of component i and fout(i) is the fan-out of component i.

∑
=

=

n

i

iCCMSCM
1

2

 (3)

CCMi =[fin(i)*fout(i)]
2
 (4)

fin(i) and fout(i) are computed by (5) and (6). In (5), Nci is the sum of the number of invocations of

component i by other components and Nri is the number of data that component i has retrieved

from the repository. In (6), Ncei is the number of other components called by component i and

Nui is the number of the repository data updated by component i. A component that controls a lot

of components usually performs various functions and so it will have a high complexity [15],[26].

fin(i)=Nci+Nri (5)

fout(i)=Ncei+Nui (6)

2.3. Cohesion Metric

The cohesion of a module is the extent to which its individual components are needed to perform

the same task. Types of cohesion are: 1) Coincidental, 2) Logical, 3) Temporal, 4) Procedural, 5)

Communicational, 6) Sequential and 7) Functional [23]. The cohesion type of every component is

computed based on the available information of functionality of each component of SASs

regarding the definition of the type of component cohesion in Table 2 [26].

In this work, we generalize the “modules cohesion” concept to the cohesion of software

architecture components and use it to measure the amount of cohesion of SASs. Our

investigations showed that cohesion of SASs in component are of three types: Functional,

Communicational and Logical, which are quantified based on Table 2.

Table 2. Type of Components Cohesion [26]

Cohesion type Description Symbol Weight

Logical Component performs multiple functions, and in

each calling, one of them is executed

C1 1

Communicational Component refers to the same data set and/or

creates the same data set

C2 2

Functional Component performs a single well-defined

function

C3 3

∑
=

=

n

i

iCCPSCP
1

2

j

p

j

ji wNCTCCP .
1

∑
=

=

Computer Science & Information Technology (CS & IT) 187

Since every component i may have different type of cohesion (Cj), so the cohesion type of

component i, CCHi, is computed by (7). Finally, cohesion of SASs is computed by (8).

j

j
i CCCH minarg=

 (7)

∑
=

=

n

i

iCCHSCH
1

2

(8)

3. Quantitative Measurement of SASs

In this section, SASs are measured from the viewpoint of maintainability based on coupling,

complexity and cohesion metrics.

The effect of software size on SASs ranking is taken into account in the computations of this

section. In object-oriented style, the number of objects (no) and in other SASs, the number of

components (n) correspond the software size. So in the evaluations done in this section, the

number of SASs components is considered as 3, 4, 5, 6, 7, 8 and 9 and the number of classes in

object-oriented style is considered accordingly as 21, 28, 35, 42, 49, 56 and 63.

3.1. Measuring the Coupling of SASs

In this section, the coupling formula of every SAS is computed using (1) to (2).

A. Repository style. In this style, all components have common coupling with the repository.

Therefore, any change in the repository affects them. If the number of components in the

repository style is n, then the number of couplings in this style will be n as well. Thus coupling of

repository style is obtained from wn
3

. .

B. Blackboard style. The control component has a common coupling with the blackboard and

has data coupling with the knowledge resources. Therefore, the control component has one

common coupling and n data coupling while the knowledge resources have a common coupling

with the blackboard. Thus, the coupling of the control component is n.w1+ w3 and the coupling

of each knowledge resource is w3. Then coupling of this style is obtained from
2

3

2

31 .).(wnwwn ++ .

C. Pipe and filter style Every filter (component) has a stamp coupling with the next filter while

the last filter has no coupling with any other filter. The number of couplings is n-1, and regarding

the coupling type, the coupling of this style is obtained from wn
2

1−

D. Layered style The coupling type of every layer (component) with its lower layer is data.

Considering the fact that coupling is two way, the last and first layers have only one coupling

while other layers have two couplings. So for n layer, the coupling of this style is obtained from
2

1

2

1 .2).2(4 WWn +− .

E. Implicit invocation style. If, in average, n/2 of components publish the events that are favored

by n/2 of the components, the coupling type of the event publisher component with the dispatcher

component is data. If an event occurs, the dispatcher component invokes the interested

components, so the coupling type of the dispatcher component with the interested components is

188 Computer Science & Information Technology (CS & IT)

data, and the coupling of the dispatcher component will be (n/2).w1. The coupling type of

independent components (n/2) is data, so coupling of this style is obtained from

2).2/()).2/((
1

2

1 ww nn + .

F. Client/server style. The coupling of the client with the server is data type. Supposing that, in

average, the coupling of each server component is f and, since some server components are in

transaction and usually the last component is related to repository, thus about r % of the

components have just one connection with the repository. So, coupling of this style is obtained

from 2

3

2

1

2).()1(
1

rnwwfnrw +−+ .

G. Broker style. Coupling of all components is data type. Considering these facts: (1) the client

component is related to the client side proxy, (2) the client is related to the broker in order to be

informed of different services of the server, (3) the server side proxy is coupled with the broker,

(4) the broker is coupled with the server side proxy and (5) the broker is coupled with the server

for being informed of different type of services of the server, and also considering the similarity

of the coupling of the server components to client/server style, the style coupling is obtained from

2

3

2

1

2 ..).()1(8
1

wnrwfnrw +−+ .

H. Object oriented style. In this style, the type of coupling is data. A case study done by Yu and

Ramaswamy [28] on components dependency showed that 83% of the couplings between classes

are of parameter (data) type. Coupling of each class with other classes is considered as fo. So style

coupling is obtained from woo nf
1

. .

Column 2 of Table 3 shows the coupling formulas of SASs. The third column shows the coupling

value obtained by replacing the weight of coupling type based on Table 1.

Table 3. Coupling Formulas of SASs

Symbol Coupling Formula Coupling Value

RPS wn
3

. n3

BKB 2

3

2

31 .).(wnwwn ++ nn 9)3(2
++

P/F wn
2

1− 12 −n

LYD 2

1

2

1 .2).2(4 WWn +− 64 −n

I/I 2).2/()).2/((
1

2

1 ww nn +)2/()2/(2
nn +

C/S 2

3

2

1

2
).()1(

1
rnwwfnrw +−+ nrfnr ..9.)1(1

2
+−+

BRK 2

3

2

1

2 ..).()1(8
1

wnrwfnrw +−+ nrfnr ...9.)1(8 2
+−+

OO woo nf
1

.
oo nf

The coupling value of classes in object-oriented style (fo) is related to the designing manner of the

past software systems. This is true for the coupling value of server components (f) in the broker

and client/server styles as well. Therefore, software designers determine the average value of

coupling (i.e. f and fo) by referring to the previous software design records. For displaying the

relationship between coupling value and software size, it is necessary that first the values of f , r

and fo parameters are determined. Thus, documents of software design projects of a large and

Computer Science & Information Technology (CS & IT) 189

valid software company in Iran is investigated. Accordingly, after computations, the values of

these parameters become f=1.65 and fo=1.5 and r=0.2. By setting the parameters of f, fo and r to

the designated formulas and parameters n and no, the coupling value of SASs is computed

considering the software size (number of components), and its diagram is shown in figure 1.

According to this diagram, the coupling value of SASs is increased by increasing of the software

size.

Figure 1. Coupling value of SASs based on the size of software

3.2. Measuring the Complexity of SASs

In this section, the complexity formula of every SASs is computed using (3) to (6).

A. Repository style. In this style, all components read from the data repository and modify it.

Thus, both their fan-in and fan-out is equal to 1. Therefore, the total fan-out of each component,

considering the writing in the repository and invoking the repository for this writing, is 3. Thus

the complexity of independent components is 9 and the complexity of style is obtained from

n9 .

B. Blackboard style. The fan-in of the control component is 1 (for examining the status of the

blackboard) and its fan-out is 2 (for invoking the blackboard for reading its status and invoking

the knowledge resources). The fan-in of knowledge resources is 2 (for invoking by the control

component and reading from the blackboard) and its fan-out is 3 (for invocation of the blackboard

for reading and writing into the blackboard). So the complexity of the control component is 22,

the complexity of each of the knowledge resource is 36, and complexity of style is obtained

from n
22 364 + .

C. Pipe and filter style. The first filter (component) has no input and the last filter does not have

any output. Thus, their complexity is 0. The other filters have one input and one output. So the

complexity of style is obtained from. 2−n

D. Layered style. In this style, the relation of lower layer to upper layer is response to the request

of upper layer, so in computing of layer's fan-out, this relation is ignored, i.e. only upper layer

invokes lower layer. Thus, each layer has fan-in and fan-out equal to 1. None of the layers does

not invoke first layer and the last layer invokes no layer. So their complexity is 0 and the

complexity of style is obtained from 2−n .

190 Computer Science & Information Technology (CS & IT)

E. Implicit invocation style. With the occurrence of an event, the dispatcher component invokes

the interested components. Therefore, the fan-in of dispatcher component is 1 (for occurrence of

the event that led to the invoking of the interested component by the dispatcher component) and

its fan-out is 1 (for invocation of the interested component, when an event occurs). Therefore, its

complexity is 1. The complexity of event publisher due to lack of fan-in and the complexity of

interested components due to lack of fan-out is 0. Therefore, the complexity of style is 1.

F. Client/server style. The client component invokes a procedure from the server, so fan-in of

the server and fan-out of the client is equal to 1. Since the client is not invoked by the components

and has no direct access to the repository, its fan-in is equal to 0 and its complexity is 0. The

number of fan-ins and fan-outs of the server components, in average, is considered as f. So the

complexity of each server component is f
4
 and the complexity of style is nf

4
.

G. Broker style. The client component gets informed of the services of the server through the

method interface of the server that has been offered to the broker component, so both fan-in and

fan-out of the server becomes 1. In addition, fan-in of the broker becomes 1 due to accessing the

interface of the server services. The client invokes the client side proxy, thus its fan-out becomes

1 as well. The client side proxy sends a request to the broker component, therefore, both its fan-in

and fan-out become 1. The broker component sends the request to the server side proxy. On the

other hand, the broker invokes the server to get informed of the interface of the server services.

Therefore, both fan-in and fan-out of the broker become 2. The server side proxy has the fan-in

and fan-out equal to those of the client side proxy too. The complexity of server components is

considered similar to that of the client/server style, thus style complexity is obtained

from nf 8274+ .

H. Object-Oriented style. If, in average, the number of fan-in and fan-out of each class is

considered as fo, then the complexity of each class becomes fo
4
 and the complexity of style is

oo nf 4
.

Table 4 shows the complexity formulas of SASs. Values of f and fo are considered as similar to

those in the Section 3.1.

Table 4. Complexity Formulas of SASs

Symbol Complexity Formula

RPS n9

BKB n22 364 +

P/F 2−n

LYD 2−n
I/I 1

C/S nf
4

BRK nf
8274+

OO oo nf
4

By setting the parameters n and no, the complexity value of SASs is computed considering the

software size and its diagram is shown in figure 2. According to this diagram, the complexity

value of most SASs is increased by increasing of the software size.

Computer Science & Information Technology (CS & IT) 191

3.3. Measuring the Cohesion of SASs

In this section, the cohesion formula of every SAS is computed using (7) to (8).

A. Repository style. Each component processes the same set of data, so their cohesion type is
communicational. The repository component performs various functions on the data, and in each

calling, one of the functions is performed. So its cohesion type is logical, and the cohesion of

style is ccn
2

1

2

2
+ .

Figure 2. Complexity value of SASs based on size of software

B. Blackboard style. Each knowledge resource processes the same set of data, so their cohesion

type is communicational. The control component invokes the knowledge resources based on the

status of the blackboard. Therefore, its cohesion type is logical. The blackboard component

performs various functions and, in each invocation, one of these functions is performed. So, its

cohesion type is logical, and the cohesion of style is ccn
2

1

2

2
2+ .

C. Pipe and filter style. Each filter processes the same set of data, so its cohesion type is

communicational and the cohesion of style is cn
2

. .

D. Layered style. Each layer contains some components; regarding the invoking of upper layer,

one of components of the lower layer is performed, so the cohesion type of each layer is logical

and the cohesion of style is cn
1

. .

E. Implicit invocation style. Since the components are publisher or interested in the event, their

cohesion type is communicational. The dispatcher component performs various functions and, in

each invocation, one of them is performed. Thus, its cohesion type is logical and the cohesion of

style is
2

2

2

1 nCC + .

F. Client/Server style. The server provides various services for the client by its components, and

in each invocation, one or some of the server components are performed so that each one works

on the same data. Accordingly, their cohesion type is communicational. The client component
performs a specific function, so its cohesion type is functional. The repository component

192 Computer Science & Information Technology (CS & IT)

performs various functions and in each calling, one of them is performed. So its cohesion type is

logical and the cohesion of style is
2

3

2

2

2

1 CnCC ++ .

G. Broker style. The client side proxy, server side proxy, broker and server components perform
various functions and in each invocation, just one of the functions is performed, so their cohesion

type is logical. The client component performs a specific function, thus its cohesion type is

functional. The repository component performs various functions and in each calling, one of them

is performed. Therefore, its cohesion type is logical. Cohesion of the server components is

considered similar to that of the client/server style. Thus, the cohesion of style

is CCC n
2

3

2

2

2

1
4 ++

.

H. Object-Oriented style. The classes in this style define the data of an entity and its related

functions, so, the cohesion type of each class is communicational and the cohesion of style is

2.Cno .

Column 2 of Table 5 represents the cohesion formulas of SASs. The third column shows the

cohesion value obtained by replacing the weight of cohesion type based on Table 2. By setting the

parameters n and no, the cohesion value of SASs is computed considering the software size and
its diagram is shown in figure 3. According to this diagram, the cohesion value of SASs is

increased by increasing of the software size and the amount of increase is higher in the object-

oriented style relative to the other styles.

Figure 3. Cohesion value of SASs based on the software size

Computer Science & Information Technology (CS & IT) 193

Table 5. Cohesion Formulas of SASs

Symbol Cohesion Formula Cohesion Value

RPS ccn
2

1

2

2
+

14 +n

BKB 2

1

2

2 2. CCn +

24 +n

P/F cn
2

.

n2

LYD cn
1

.

n

I/I 2

2

2

1 nCC +

n41+

C/S 2

3

2

2

2

1 CnCC ++

n410 +

BRK CCC n
2

3

2

2

2

1
4 ++

n413 +

OO 2.Cno on2

4. COMPUTATION OF THE RANK OF SASs

In this section, the ranking of SASs is performed based on the results of measurement coupling,

complexity and cohesion of SASs using AHP method.

4.1. Organizing Ranking Problem of SASs

In SASs ranking problem, aim is in the first level, metrics are in the second level and SASs are in

the third levels of the structure.

Figure 4. Hierarchical structure of SASs ranking

4.2. Computation of Priority of Metrics and the Relative Rank of SASs

In this stage, comparison matrix of the metrics and comparison matrices of SASs for the metrics

are formed. The complexity and cohesion values of a component do not affect on the other
components of SAS. However, the coupling value of a component affects the related components.

Accordingly and due to the emphasis of researches on the importance of coupling [13], [15] the

preference of coupling metric is considered more important than (1.6) the other metrics, and the
preferences of other metrics are considered equal. Then the relative priority of metrics is

computed by AHP method, the relative priority of coupling becomes 0.444 and that of the other

metrics become 0.278.

To determine the relative rank of SASs for each metric, comparison matrices of SASs for each

metric is formed. To set cell (i, j) of the comparison matrix of metric k, for the style x in row i

with the style y in column j, if there is a direct relation between the metric k and maintainability,

194 Computer Science & Information Technology (CS & IT)

the ratio of the metric value of style x to the metric value of style y is set to cell (i,j), otherwise

the inverse of the ratio is set to cell(i,j). After setting of the comparison matrices based on the

described procedure, the relative rank of SASs for each metric is computed by AHP method.

Investigation of the consistency using the Expertchoice tool, tool of AHP method, showed that

consistency index is zero, so there is no inconsistency between the comparisons.

4.3. Computing the Final Rank of SASs

The final rank of SASs is computed regarding the priority of metrics and the relative ranks of

SASs. Table 6 shows the final rank of SASs. Based on the values of this Table, the Implicit/

Invocation (I/I), Pipe and Filter (P/F), and Layered (LYD) styles provide the highest support for

maintainability, respectively.

Figure 5 shows the changes in maintainability value of SASs based on the changes of software

size. With the increasing of software size, the rank of some styles such as Pipe and Filter(P/F) and

Layered (LYD) are decreased, and the rank of some styles such as Implicit Invocation(I/I) are

increased while the rank of some styles such as Blackboard(BKB) are not changed considerably.

Table 6. Rank of SASs from the maintainability viewpoint

n=9 n=8 n=7 n=6 n=5 n=4 n=3 Symbol

 no=63 no=56 no=49 no=42 no=35 no=28 no=21

70 70 70 69 69 67 64 RPS

55 55 55 55 54 54 52 BKB

158 160 163 166 170 176 187 P/F

146 149 151 155 161 169 185 LYD

260 257 255 251 246 238 223 I/I

99 99 99 98 97 97 95 C/S

95 94 94 92 91 89 87 BRK

116 116 115 114 112 110 107 OO

Figure 5. Maintainability value of SASs based on the changes of software size

Figure 6 shows the diagram of styles ranks based on the relative priority of metrics. It is known as
sensitivity analysis diagram, which is drawn by Expertchoice. In this diagram, the vertical lines

show the relative priority of metrics and the horizontal lines show the rank of SASs based on the

metrics. The final rank of SASs is determined by the “OVERALL” label based on the vertical line

(figure 6). The coupling metric accords with the y-axes and after that are complexity, cohesion

and combination of the three metrics.

Computer Science & Information Technology (CS & IT) 195

Figure 6. Diagram of styles rank regarding the relative priority of metrics

4.4. Analyzing the Rank of SAS

Here, by changing the values of some parameters, the effects of these changes on the rank of

SASs are investigated.

• For the values of coupling types (Section 2.A), other values were used besides the values

mentioned in table 1 (for twelve values in the ranges 1≤w1≤1.5, 1.5≤w2≤2.5 and

2.5≤w3≤3.5), but they did not lead to any changes in the rank position of the SASs'

maintainability.

• For the values of cohesion types (Section 2.C), other values were used besides the values

mentioned in table 2 (for twelve values in the ranges 1≤c1≤1.5, 1.5≤c2≤2.5 and

3≤c3≤3.5), but they did not lead to any changes in the rank position of the SASs'
maintainability.

• By changing the f parameter (coupling of the server components in Section 3.A) in the

range of 1.65≤ f≤2.8 at the Client/Server (C/S) style, the change in the rank position of

this style was checked. It was found that only for f≥2, the rank position of this style is

placed after the Broker (BRK) style and no other change in the rank position of other

styles was seen.

• For determining the relative priority of metrics (In Section 4.B), in addition to 1.6 (the

relative priority of coupling metric compared to that of the other metric), the ten values in
the range of 1.3 to 2.2 were used. The results showed no changes in the rank position of

the styles from maintainability viewpoint.

5. CONCLUSION

In this study, a model was offered to analyze the impact of SASs on software maintainability

according to the measurement-based evaluation of SASs. In this model, first, the formulas were

presented to compute the coupling, complexity and cohesion values of each SAS. Next, the
coupling, complexity and cohesion values of SASs were computed quantitatively using the

presented formulas. Then, the relative rank of each SAS was determined regarding the coupling,

complexity and cohesion values of SASs. Afterward, the priority of metrics was determined.
Subsequently, the final rank of SASs maintainability was determined using AHP method.

The analyses done showed that our proposed method had stability regarding the value of coupling
types, different values of f parameter, value of cohesion types and preference of coupling metric

to the other metrics.

196 Computer Science & Information Technology (CS & IT)

Since the evaluation of this paper is based on measurement as compared to the method used in

[9], which uses scenario-based evaluation and the quality of its results is dependent on the used

scenarios and also on the extensive expert participation, the results of our proposed model is more

precise, more reliable and more analyzable.

The proposed method gives formulas to determine the values of 1) coupling, 2) complexity and 3)

cohesion of each SAS, while this has not been done in previous methods.

As compared to [4], [8], both the proposed method and the method used in [9] give the

quantitative results about the maintainability of SASs that is basis of the systematic

recommendation and selection of SAS.

Finally, only the proposed method examines the effect of the software size on the maintainability

rank of SASs.

The methods given [6], [7], [11] use the mathematic model-based evaluation and the method used

in [10] uses the simulation-based evaluation. These methods verify specific features such as

consistency and satisfaction of some properties by SASs that are different from the quality
attributes required in this paper. The above points and table 8 clearly show the position of the

proposed method as compared to the methods of [4], [8] and [9].

It is worth noting that the ranking of SASs based on our proposed method is consistent with the

priorities of SASs from the viewpoint of maintainability in the methods used in [2], [12], which

are based on experimental studies.

Table 7. Comparison of the proposed method with the related methods

Method

Criteria

Proposed

Method

Method

[4]

Method

[8]

Method [9]

Base Measurement Tree Unsystematic Scenario

Offering the Quantitative Results

about the Maintainability of SASs

● ●

Total SASs that were Investigated 8 6 8

Considering the Effect of Software

Size on the Rank of SASs

●

REFERENCES

[1] Len Bass, Paul Clements. & Rick Kazman(2003) Software Architecture in Practice (2nd Edition),

Addison-Wesley, p 89.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sornmerlad, & M. Stal,(1996) Pattern-Oriented Software

Architecture- A system of Patterns" John Wiley & Sons, p. 394.

[3] C. Seo, G. Edwards, S. Malek, & N. Medvidovic,(2009) "A Framework for Estimating the Impact of

a Distributed Software System’s Architectural Style on Its Energy Consumption", 7th Working

IEEE/IFIP Conf. on Software Architecture, pp. 277-280.

[4] B. Harrison, & P. Avgeriou,(2007) "Leveraging Architecture Patterns to Satisfy Quality Attributes",

1st European Conf. on Software Architecture, Springer, pp. 263-270.

[5] P. Avgeriou P, & U. Zdun, (2005) "Architectural Patterns Revisited: A Pattern Language", Proc. of

10th European Conf. on Pattern Languages of Programs, pp.1-39.

[6] J.S Kim, and D. Garlan, (2006) "Analyzing Architectural Styles with alloy", Proc. of the ISSTA 2006

workshop on Role of Software Architecture for Testing and Analysis, pp. 70-80.

[7] R. Bruni, A. Bucchiarone, A. Gnesi, D. Hirsch, & A.L. Lafuente, (2008) "Graph-based Design and

Analysis of Dynamic Software Architectures", LNCS 5065, pp. 37–56,.

Computer Science & Information Technology (CS & IT) 197

[8] H. Reza, & E. Grant, (2005) "Quality-Oriented Software Architecture", the IEEE Int. Conf on

Information Technology, pp. 140 – 145.

[9] Gholamreza Shahmohammadi, & Saeed Jalili, (2009) "Scenario-Based Quantitative Evaluation of

Software Architecture Style from Maintainability Viewpoint", 14 th Annual of CSI Computer

Conference (CSICC 2009), Iran, Amirkabir University.

[10] H. Grahn, & J. Bosch, (1998) "Some Initial Performance Characteristics of Three Architectural

Styles", Proc. of Int. Workshop on Software and Performance.

[11] D. Garlan, & S. Khersonsky, (2000) "Model Checking Implicit Invocation Systems", 10th Int.

Workshop On Software Specification and Design.

[12] M. Shaw & D. Garlan, (1996) Software Architecture: Perspectives Discipline on an Emerging

Discipline, Prentice Hall.

[13] L. Briand, S. Morasca, & V. Basili, (1996) "Property Based Software Engineering Measurement",

IEEE Trans on Software Eng., vol. 22, no. 1, pp. 68-86.

[14] L. Briand, J. Wust, & H. Lounis, (1999) "Using Coupling Measurement for Impact Analysis in

Object-Oriented Systems", IEEE Int. Conf. on Software Maintenance.

[15] S.L. Pfleeger, & J.M. Atlee, (2006) ”Software Engineering, Theory and Practice”, 3rd Edition,

Prentice Hall.

[16] P. Yu, T. Systa, & H. Muller, (2002) "Predicting Fault Proneness using OO Metrics. An Industrial

Case Study," 6th European Conf. on Software Maintenance and Reengineering, pp.99 – 107.

[17] M. Alshayeb, and L. Wei, (2003) "An Empirical Validation of Object-Oriented Metrics in Two

Different Iterative Software Processes," IEEE Trans on Software Engineering, vol. 29 (11), pp. 1043

– 1049.

[18] F. Bachmann, L. Bass, M. Klein, M. & C. Shelton, (2005) “Designing Software Architectures to

Achieve Quality Attribute Requirements”, IEE Proc. of Software, Vol. 152, No 4,pp. 153- 165.

[19] C.L. Hwang, K. Yoon, (1981) "Multiple Attribute-Decision Making", Springer-Verlag.

[20] T. L. Saaty, & L. G. Vargas, (2001) “Models, Methods, Concepts & Applications of the Analytic

Hierarchy Process”, Kluwer Academic Publisher.

[21] L. Bass, P. Clements, & R. Kazman, (1998) Software Architecture in Practice, Addison-Wesley, p.

17.

[22] ISO, (2001), International Organization for Standardization, “ISO 9126-1:2001, Software Engineering

– Product quality, Part 1: Quality model”.

[23] E. Yourdon, & L. Constantine, (1978) Structured Design, Englewood Cliff, NJ, prentice Hall.

[24] N. Fenton, & A. Melton, (1990) "Deriving Structurally Based Software Measures", Journal of

Systems and Software 12(3), pp. 177-187.

[25] M. J. Shepperd, & D.C. Ince, (1990) "The use of metrics in the early detection of design errors",

Proc.of the European Software Engineering Conf, pp.67-85.

[26] NE. Fenton, & SL. Pfleeger, (1997) "Software Metrics: A Rigorous and Practical Approach", (2nd

Edition), International Thomson Computer PRESS.

[27] S. Chidamber, & C. Kemerer, (1994) "A Metrics Suite for Object Oriented Design", IEEE Trans on

Software Engineering, vol. 20, pp. 476-493.

[28] L. Yu, & S. Ramaswamy,(2007) "Component Dependency in Object-Oriented Software", Journal of

Computer Science and Technology, 22(3), pp. 379-386.

[29] Lee, S.hyun. & Kim Mi Na, (2008) “This is my paper”, ABC Transactions on ECE, Vol. 10, No. 5,

pp120-122.

AUTHORS

Gholamreza Shahmohammadi received his Ph.D. degree from Tarbiat Modares

University (TMU, Tehran, Iran) in 2009 and his M.Sc. degree in Computer

Engineering from TMU in 2001. Since 2010, he has been Assistant Professor at the

Olum Entezami University-Amin(Tehran, Iran). His main research interests are

software engineering, quantitative evaluation of software architecture, software metrics

and software cost estimation.

 E-mail: Shah_mohammadi@yahoo.co.uk

