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ABSTRACT 

 
In the paper the analysis of the periodic kernels parameters is described. Periodic kernels can 

be used for the prediction task, performed as the typical regression problem. On the basis of the 

Periodic Kernel Estimator (PerKE) the prediction of real time series is performed. As periodic 

kernels require the setting of their parameters it is necessary to analyse their influence on the 

prediction quality. This paper describes an easy methodology of finding values of parameters of 

periodic kernels. It is based on grid search. Two different error measures are taken into 

consideration as the prediction qualities but lead to comparable results. The methodology was 

tested on benchmark and real datasets and proved to give satisfactory results. 
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1. INTRODUCTION 

 
Estimation of a regression function is a way of describing a character of a phenomenon on the 

basis of the values of known variables that influence on the phenomenon. There are three main 

branches of the regression methods: parametric, nonparametric, and semiparametric. In the 

parametric regression the form of the dependence is assumed (the function with the finite number 

of parameters) and the regression task simplifies to the estimation of the model (function) 

parameters. The linear or polynomial regression are the most popular examples. In the 

nonparametric regression any analytical form of the regression function can be assumed and it is 

built straight from the data like in Support Vector Machines (SVM), kernel estimators, or neural 

networks. The third group is the combination of the two previously described. The regression task 

in this case is performed in two steps: firstly the parametric regression is applied followed by the 

nonparametric. 

 

Time series are a specific kind of data: the observed phenomenon depends of some set of 

variables but also on the laps of time. The most popular and well known methods of time series 

analysis and prediction are presented in [1] which first edition was in 60's of the 20th century. 

 

In this paper the semiparametric model of regression is applied for the purpose of time series 

prediction. In the previous works kernel estimators and SVM were used for this task [2][3] but 
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these methods required mapping of the time series into a new space. Another approach was 

presented in [4] where the Periodic Kernel Estimator (PerKE) was defined. It is also the 

semiparametric algorithm. In the first step the regression model is built (linear or exponential) and 

for the rests the nonparametric model is applied. The final prediction is the compound of two 

models. The nonparametric step is the kernel regression with the specific kind of kernel function 

called periodic kernel function. In the mentioned paper two kernels were defined. 

 

Because each periodic kernel requires some parameters in this paper the analysis of the influence 

of kernel parameters on prediction error becomes the point of interest. The paper is organized as 

follows: it starts from ashort description of prediction and regression methods, then the PerKE 

algorithm is presented. Afterwards, results of the experiments performed on time series are given. 

The paper ends with conclusions and the description of further works. 

 

2. PREDICTION AND REGRESSION MODELS 

 
2.1. ARIMA (SARIMA) Models 

 
SARIMA(Seasonal ARIMA) model generalizes the Box and Jenkins ARIMA model 

(AutoRegressive Integrated Moving Average)[1] as the connection of three simple models: 

autoregression (AR), moving average (MA) and integration (I).  

 

If B is defined as the lag operator for the time series x (��� = ����) then the autoregressive model 

of the order p(at is the white noise and will used also in other models) is given by the formula:  

 �� =  ������ + �
���
 + ⋯ +������ + 
� 

and may be defined as: (1 − ��� − �
�
 − ⋯ −����)�� = 
� 

 

In the MA models the value of time series depends on random component at and its q delays as 

follows: 

 �� =  
� − θ�
��� − θ

��
 − ⋯ − θ�
��� 

or as: 
��1 −  θ�� − θ
�
 − ⋯ − θ���� = �� 

 

For the non-stationary time series the d operation of its differentiation is performed, described as 

the component (1 - B)
d
 in the final equation. The full ARIMA(p, d, q) model takes the form: 

 �1 − ��� − �
�
 − ⋯ �����(1 − �)��� = 
��1 −  θ�� − θ
�
 − ⋯ − θ���� 

 

The SARIMA model is dedicated for time series that have strong periodic fluctuations. If s is the 

seasonal delay the model is described as SARIMA(p, d, q)(P,D,Q)
s
 where P is the order of 

seasonal autoregression �1 − Φ��� − Φ
�
� − ⋯ Φ�����, Q is the order of seasonal moving 

average �1 − Θ��� − Θ
�
� − ⋯ Θ�����and D is the order of seasonal integration (1 − �� −�
� − ⋯ ���). 

 

2.2. Decomposition Method 

 
This method tries to separate several components of the time series, each of them describing the 

series in the different way. Most important components are as follows: 
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− trend component (T): the long-time characteristic of the time series, 

− seasonal component (S): the periodic changes of the time series, 

− cyclical component (C): repeated but non-periodic changes of the time series, 

− irregular (random) component (e). 

 

Components are usually aggregated. It may be an additive aggregation when the final predicted 

value is a sum of all time series components or multiplicative aggregation when the final value is 

calculated as a multiplication of all time series components. First is called additive and the final 

predicted value is the sum of component time series values and the second is called multiplicative 

(aggregation is the multiplication of time series values). 

 

2.3. Periodic Kernels 

 
Periodic kernels belong to a wide group of kernel functions that are applied for the task of 

estimation of the regression function. They fulfil the typical conditions for the kernel function and 

some of the specific ones. As the most important typical features of the kernel function the 

following should be mentioned [5]: 

 

− � �(�)�� = 1�  

− ∀� ∈ " �(�) = �(−�) 

− � ��(�)�� = 0�  

− ∀� ∈ " �(0) ≥ �(�) 

− � �
�(�)�� < ∞�  

 

Furthermore, if we assume that the period of the analysed time series is Tthen there are the 

following specific conditions for the periodic kernel function: 

 

− for each' ∈ ( the value K(kT) is the strong local maximum, 

− for each� ∈ " ∖ *0+  �(0) > �(�), 

− for each-�, -
 ∈ / that -� < -
    �(-�) > �(-
). 

 

In the paper [4] two periodic kernels were defined, named First Periodic Kernel (FPK) and 

Second Periodic Kernel (SPK). The formula of FPK is the multiplication of the exponential 

function and the cosine: 

 01�(�) =  12 3�4|6|(1 + cos :�)  
 

The constant C assures that K is integrable to one. This value depends on the values aand b as 

follows: 

 2 = 2 < 346(1 + cos :�)�� = 4

 + 2:

(

 + :
)>
?  

 

In other to define the FPKit is to substitute a and b with the period T and parameter@that is a 

function attenuation (the ratio of the two consecutive local maxima): 

 : = 2AB  

@ =  �(C + B)�(C) ⇒ −
B = ln @ ⇒ 
 = − ln @B  
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Based on this substitution the following formula is obtained: 

 �(�) = 12 3GH IJ |6| K1 + cos 2�AB L 

2 = 4B ln2 @ + 4BA
− lnM @ − 4A
 ln
 @ 

 

On the Figure 1. the sample FPK is presented. 

 

 
 

Figure 1. First Periodic Kernel generated withT=5, @ = 0.6 

 

The second kernel (SPK) has a following formula: 

 N1�(�) =  12 3�4|6| cosO  :� 

 

where 2 = 2 < 346 cosO :� �� = 2[QR]?>>
?  

 

and In is an integral: 

 QR = < 346 cosR :� 

 

The final formula for the constant C calculated recurrently is following: 

 

2 = T− 1
 − U 
(

 + 4V
) ∏ XYYZ[?
R

Y[� \ ] XY
R

Y[�  

with X? = 1,    XY = 2V(2V − 1)

 + 4V
  

 

It is possible to calculate the value of the C in the analytical way when the software allows 

symbolic calculation. Experiments presented in this paper were performed in Matlab and the C 

was calculated in the symbolic way. 

 

This kernel also may be defined with the period T and the attenuation@: 
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�(�) = 12 3GH I^ |6| cosO A�B ,     :(B) = AB ,    
(@) = − ln @B  

 

The role of n parameter is to describe the ,,sharpness'' of the function in the local maxima. On the 

Figure 2. the sample SPK is given. 

 

 
 

Figure 2. Second Periodic Kernel generated with T=5, @ = 0.6 and n = 10 

 

3. PERKE ALGORITHM  

 
Periodic Kernel Estimatoris a member of the group of semiparametric (two step) methods [6][7]. 

Methods from this group consist of the initial parametric step and the final nonparametric one. 

After the parametric step the residuals are calculated and the nonparametric part of the model tries 

to explain the only variation of residuals. The final model can consists of  addition or 

multiplication of the basic results. In this aspect the semiparametric method is similar to the 

decomposition method. 

 

The PerKE models the residual part of the time series with the following formula: 

 �(C) = ∑ ���Y�(C − V)ZY[�∑ �(C − V)ZY[�  

 

where k is the number of previous observation in the train sample of the time series. 

 

It may be noticed that this equationis derived from the Nadaraya-Watson kernel estimator 

[8][9]but the smoothing parameter h was removed. This may cause the situation of 

oversmoothing the data. It is observed in two variants: the predicted values are overestimated 

(bigger than real values) or overestimated (smaller than real values). In order to avoid this 

situation the parameter called underestimation ` is introduced. It is the fraction of the predicted 

and original value: 

 `Y =  �aY�Y 
 

The underestimation is trained in the following way: if p is an interesting prediction horizon the 

last p observations from the train set are considered as the test set and predict them on the basis of 

the rest of the train set. Then the vector of underestimations is defined as the vector of fractions of 
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predicted and real values. In the final prediction the values coming from the nonparametric step 

are divided by the corresponding `. 
 

4. SELECTION OF KERNEL PARAMETERS 

 
4.1. Discretisation of Periodic Kernels 

 
In the experiments a simplified –a discretized – form of periodic kernels was used. Let assume 

that only the values of the kernel for the period multiple are interesting: K(x) where� = 'B, ' ∈(. Then the formula for FPK simplifies to the following one: 

 �('B) = 22 3|Z| cO d 

 

Discretisation of the SPK leads to the same formula. The only difference between two discretized 

kernels is the value of the C constant which can be tabularised before the experiments. It speeds 

up calculation because each constant C (for each demanded form of periodic kernel) was 

calculated once and was read in a constant time. 

 

On the basis of the discretized form of periodic kernels and the kernel regression formula of 

residual part of the series, it might be claimed, that both types of periodic kernels give the same 

results. 

 

4.2. The Error Evaluation 

 
The error of prediction was measured with two different quality functions: 

 

ef1g = 100- U |hY − haY||hY|R
Y[�      "eNg = i1- U(hY − haY)
R

Y[�  

 

Each of them describes a different kind of an error. The first one points the averaged absolute 

error and is more resistant when the test samples have values from very wide range. The second 

one measures the error in the unit of the analysed data so it can be more interpretable in some 

cases. 

 

4.3. Setting the Parameters for SPK 

 
Let`s consider the very popular time series describing the number of passengers in America (G 

series from Box and Jenkins [1]). It contains 144 monthly values of number of passengers (in 

millions) between 01.1949 and 12.1960. Its natural period is 12. This time series is presented on 

the Figure 3. 
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Figure 3. G time series 

 

For the purpose of the analysis of an influence of the SPK parameters on the prediction accuracy 

the following optimization step was performed. Instead of calculation of the C value for each 

prediction task, the array of C values for the predefined periodic kernel parameters was created. 

The attenuation was changing from  @ = 0.1 to  @ = 0.9 with the step 0.1. The sharpness was 

changing from n = 2 to n = 60 with the step 2. 

 

The error of the prediction depending on the kernel parameters is shown on the Figure 4. 

 

 
 

Figure 4. G time series prediction error (MAPE on the left and RMSE on the right) as the function of @ and 

sharpness 

 

In general, it may be seen that the error of the prediction decreaseswhen the @increases. 

Additionally, it is observed that the influence of the sharpness is opposite. In other wordsthe 

decrease of the sharpness implies the decrease of the error. 

 

Because the period of this series is 12 (the number of months) periodic kernel parameters were 

established on the basis of prediction on 144 – 12 G series values (all data without the last 12 

values). Both error measures were considered. The smaller time series were called train series. 

 

Table 1 compares the errors on the train series and on the whole series. The best results (typed 

with bold font) for the train series were for @ = 0.9 and sharpness = 2. Performing the grid 

experiment for the whole series the best results were for 0.9 and 2 (with MAPE) and for 0.9 and 4 

(with RMSE) respectively. It can be seen, that on the basis of the MAPE results for train data the 
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best values of parameters (with the assumed grid steps) were found and with the RMSE results – 

almost the best. 

 
Table 1. Comparison of best results and kernel parameters for train and whole time series. 

 

Train series  Whole series k sharpness MAPE RMSE  k Sharpness MAPE RMSE 

0.9 2 3.6877 17.8085  0.9 2 3.1989 16.1038 

0.9 4 3.6938 17.8752  0.9 4 3.2084 16.0972 

 

5. REAL DATA APPLICATION 

 
Selection of periodic kernel parameters was applied for the real time series, describing the 

monthly production of heat in one of the heating plant in Poland. This series (denoted as E) 

contained 97 values. The series is presented on the Figure 5. 

 

 
Figure 5. E time series prediction – monthly production of heat. 

 

PerKE algorithm was performed in three ways: periodic kernels with arbitrarily set kernel 

parameters (two types of periodic kernels) and the SPK with the presented methodology of 

parameters setting. Additionally, two popular time series prediction methods were used as the 

reference points for kernel prediction results: SARIMA and decomposition method. 

 

The results of all experiments are shown in the Table 2. (G series) and Table 3. (E series). In the 

first case periodic kernel parameters did not depend on the chosen measure. The final prediction 

quality is still better than the quality of other popular prediction methods.  
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Table 2. Comparison of the G time series prediction results. 

 

method MAPE RMSE annotations 

SARIMA 4.80% 26.95 (1,0,0)(2,0,0)
12 

decomp. 4.51% 26.60 exponential+multiplicative 

FPK 3.20% 16.10  

SPK 3.72% 21.00 T=12, @=0.4, n =60 

SPK(MAPE/RMSE) 3.20% 16.10 T=12, @=0.9, n =2 

 
Table 3. Comparison of the E time series prediction results. 

 

method MAPE RMSE annotations 

SARIMA 20.95% 10 115.91 (1,0,0)(2,0,0)
12 

decomp. 22.10% 9 010.87 linear+additive 

FPK 69.13% 19 855.28  

SPK 20.08% 8 638.12 T=12, @=0.9, n =80 

SPK(MAPE) 19.13% 14 735.66 T=12, @=0.9, n =2 

SPK(RMSE) 18.26% 15 861.22 T=12, @=0.1, n =2 

 

In the second case (E series) the selected set of periodic kernel parameters depended on the 

quality measure. But for each of them the decrease of relative error is observed.  

 

6. CONCLUSIONS AND FURTHER WORKS 

 
In the paper the analysis of the periodic kernel parameters influence on the prediction error was 

analysed. Two types of periodic kernels were taken into consideration and the error of the 

prediction was measured with two different methods. On the basis of the analysis of the G time 

series and the E time series it may be said that the methodology of finding the periodic kernel 

parameters gives satisfying results. 

 

Further works will focus on the application of PerKE and periodic kernels to time series with the 

different time interval between observations. It is expected that more differences between the two 

kernels will occur. It is also possible that the sharpness will have the bigger influence on the 

prediction error. 
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