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ABSTRACT 
 
 Imaging and Image sensors is a field that is continuously evolving. There are new products 

coming into the market every day. Some of these have very severe Size, Weight and Power 

constraints whereas other devices have to handle very high computational loads. Some require 

both these conditions to be met simultaneously. Current imaging architectures and digital image 

processing solutions will not be able to meet these ever increasing demands. There is a need to 

develop novel imaging architectures and image processing solutions to address these 

requirements. In this work we propose analog signal processing as a solution to this problem. 

The analog processor is not suggested as a replacement to a digital processor but it will be used 

as an augmentation device which works in parallel with the digital processor, making the 

system faster and more efficient. In order to show the merits of analog processing the highly 

computational Normalized Cross Correlation algorithm is implemented. We propose two novel 

modifications to the algorithm and a new imaging architecture which, significantly reduces the 

computation time.      
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1.  INTRODUCTION 

 
The imaging and image sensor industry is going through a huge wave of change. Very soon there 

is going to be a great demand in the market for wearables like smart watches, headbands, glasses 

etc. Cameras will be an integral part of these devices. However these devices have severe Size, 

Weight and Power (SWaP) constraints. On the other hand companies are also trying to develop 

multi-megapixel sensors and there have been talks of developing gigapixel sensors for use in 

defence, space and medical applications. Collecting such huge amounts of data and processing it 

is not an easy task. There are a of lot emerging applications in the field of computer vision, 

biometric analysis, bio-medical imaging etc. which require ultra-high speed computations. 

Another area that is gaining traction is the use of stereo cameras, camera arrays and light-field 

cameras to perform computational imaging tasks. Current imaging architectures and digital image 

processing solutions will not work in all of these situations because they will not be able to handle 

the high computational loads and meet the SWaP requirements simultaneously. Hence there is a 

need for novel ideas and solutions that can address these requirements.  
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In this paper we reintroduce the concept of analog image processing and present it as a solution to 

the above problems of reducing SWaP and high computational load. Generally the use of the term 

analog image processing has been restricted to film photography or optical processing. We are 

using neither of these approaches but we are performing analog signal processing by considering 

the image data to be a continuous stream of analog voltage values.    

 

In order to show the advantages of analog processing we chose the problem of image alignment in 

stereo cameras. Image pairs captured from the stereo cameras can be used for a variety of 

purposes like constructing disparity and depth maps, refocusing, to simulate the effect of optical 

zoom etc. Image alignment can be used for stitching images to create panoramas, for video 

stabilization, scene summarization etc. Whatever the application, one of the most important steps 

in stereo image processing is to find correspondence between the points in the two images which 

represents the same 3D point in the scene. This has been an active area of research for many years 

now and there are a lot of stereo correspondence algorithms that have been developed. However 

some of these algorithms are either slow or have poor performance in the presence of noise or low 

light. The reason for these algorithms being slow is the very high computational requirement. In 

this work we pick one such stereo correspondence algorithm, Normalized Cross Correlation 

(NCC). NCC is very robust to noise and changes in the image intensity values but it is not 

preferred because of its high computational intensity. In this paper we propose two novel 

modifications to the algorithm which improves the computational speed without compromising 

the performance and also making it efficiently implementable in hardware. We also propose a 

new circuit architecture that can be used to implement the modified NCC algorithm in the analog 

domain. The analog domain implementation provides further speedup in computation and has 

lower power consumption than a digital implementation.   

 

The organization of the paper is as follows. Section 2 gives a brief introduction to the NCC 

algorithm. Section 3 discusses the proposed modifications to the NCC algorithm. In section 4 a 

hardware circuit architecture for the implementation of the NCC algorithm is proposed. 

Experimental results are discussed in section 5. The work is concluded in section 6.    

 

2. NORMALIZED CROSS CORRELATION 

 
All stereo correspondence algorithms can be broadly classified into intensity based algorithms 

and feature based algorithms. In feature based algorithms features such as edges and contours are 

extracted from both stereo images and then a correspondence is established between them. In 

intensity based algorithms, blocks of pixels from one image are compared to blocks of pixels 

from other images and a similarity measure such as correlation or sum absolute difference is used 

to find the best matching block. Each of these algorithms have their own advantages and 

disadvantages. Both algorithms are used widely. 

 

The Intensity based algorithms are very simple to implement, they are robust and they produce 

dense depth maps. They fail to perform well when the distance between the stereo cameras is too 

large or if there are rotations and shears in the stereo images. However the major drawback of the 

intensity based algorithms is that they are highly computational and hence it will be the algorithm 

of interest in this paper.  In this study we address the issue of high computational load of the 

intensity-based algorithms through novel modifications to the algorithm and by the way of analog 

signal processing. 

 

2.1. Review of Related Work 

 
There has been a lot of research done on stereo image registration techniques as it relates to 

multiple fields like computer vision, medical imaging, photography etc. A variety of algorithms, 
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both feature based and intensity based have been developed. In [1], the author provides a survey 

of different image registration techniques used in various fields.  

 

In this study we are mainly concerned with the implementation of an intensity based image 

alignment algorithm in hardware. There has been some work done in this regard but most of them 

are improvements to the old algorithms and some are digital hardware implementations of these 

algorithms.  

 

In [2] Lewis proposes a fast normalized cross correlation algorithm, which reduces the 

computational complexity of the normalized cross correlation algorithm through the use of sum 

table methods to pre-compute the normalizing denominator coefficients. In [3] the authors take 

the fast normalized cross correlation algorithm one step further by using rectangular basis 

functions to approximate the template image. The number of computations in the numerator will 

then be directly proportional to the number of basis functions used to represent the template 

image. Using a smaller number of basis functions to represent the template image will certainly 

reduce the computation but it may give a bad approximation of the template image, which would 

result in poor image alignment. In [4] the author uses a pipelined FPGA architecture to perform 

the Normalized Cross Correlation operation. This increases the computation speed significantly.  

   

There have been various other improvements and implementations of the NCC algorithm in 

literature however none of the implementations, to our knowledge, try to tackle the computational 

intensity problem of the normalized cross correlation algorithm from an analog signal processing 

perspective. 

 

2.2. Reasons for Choosing Normalized Cross Correlation 

 
There are a lot of intensity based stereo correspondence algorithms. We chose Normalized Cross 

Correlation (NCC) as the algorithm that we would implement because of the following reasons: 

 

1. The images being aligned have translation in the X and Y direction but no rotation or 

shear. NCC algorithm performs well for such images.  

2. NCC is less sensitive to variation in the intensity values of two images being aligned. 

3. The NCC algorithm is computationally intensive. Hence it would be challenging to come 

up with methods to reduce the computation and make it implementable in real time or 

near real time and we believe analog signal processing would have a lot of value in such 

situations.  

 

2.3. The General Algorithm 

 
Template matching is one of the simplest methods used for image alignment. There are two 

images to be aligned. One image is called the template and the other image is called the reference. 

The template image is generally divided into blocks of smaller images. There is always a tradeoff 

between the depth accuracy that can be achieved and computation that can be handled in a NCC 

algorithm. Increasing the number of blocks by reducing the block size increases the accuracy to 

which depth can be estimated but it also increases the number of times the computations have to 

be performed. There is also a limit to which the block size can be reduced. If the block size is 

made too small then it might not have enough information to align with a matching block. 

Therefore choosing an optimum template block size is important.  
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Each template block is shifted on top of the reference image and at each point a correlation 

coefficient is calculated. This correlation coefficient will act as a similarity metric to identify the 

closest matching blocks. 

 

The disadvantage of using cross correlation as a similarity measure is that it is an absolute value. 

Its value depends on the size of the template block. Also the cross correlation value of two exactly 

matching blocks may be less than the cross correlation value of a template block and a bright 

spot. The way around this problem is to normalize the cross correlation equation.  

 

Equation (1) shows how the NCC algorithm is implemented [2].  

 

                                      (1)                                             

    

In the above equation  represents the mean of the template image block and  is the mean 

value of the reference image present under the template image block. The two summation terms 

in the denominator of the above equation represent the variances of the zero-mean reference 

image and template image respectively. Due to this normalization, the correlation coefficient is 

independent of changes to image brightness and contrast. 

 

The denominator of the NCC equation can be calculated efficiently through the use of sum tables 

as suggested in [2]. However the numerator of the NCC is still computationally intensive. A 

direct implementation of the numerator of NCC algorithm on a template image of size (Tx x Ty) 

and a reference image of size (Rx x Ry) would require (Tx*Ty) multiplications and additions for 

each shift (u,v). Reducing the template image size would reduce the number of computations per 

block but it will also increase the total number of blocks on which the NCC has to be performed.  

 

3. MODIFICATIONS TO THE NCC ALGORITHM 
 
In a general Normalized cross correlation algorithm the template image is divided into blocks and 

each block is shifted on top of the reference image. At each shift a normalized correlation 

coefficient is calculated. All the pixels in the block are used to perform this calculation as shown 

in equation (1). Once this is done for all shifts, a best matching block is picked and all the pixels 

in the template block are assigned the same shift/disparity value.  

 

In the worst case scenario where there is no information available about the camera system or the 

scene, a brute force approach has to be used where the template image blocks have to be shifted 

all over the reference image. The computational complexity in this case would be very high. 

When some information is available about the camera system the maximum disparity that will be 

observed can be calculated and hence the number of shifts can be restricted. However this does 

not address the fact that the number of computations that have to be performed per block for each 

shift is still high.  

 

A pre-processing step that is generally used in most stereo correspondence algorithms is image 

rectification. Image rectification projects stereo images onto a common reference plane so that the 

correspondence points have the same row coordinates. This essentially transforms the 2D stereo 

correspondence problem to 1D. However the rectification process itself will add to the 

computational complexity of the algorithm.  
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In order to further reduce the computation and address the above mentioned issues we decided to 

use only the diagonal elements of the template image block and the reference image blocks to 

compute the correlation coefficient. All the other steps in the algorithm are followed as given by 

equation (1). The thought behind this approach is that the diagonal elements of a block have 

enough information to calculate the disparity. By introducing this modification we have 

effectively converted the problem of 2D NCC operation to a 1D NCC operation. This is very 

similar to the image rectification operation but since we are choosing only the diagonal elements 

we introduce two advantages both of which contribute to the reduction in computation.  

 

1. We are not using an algorithm to reduce the NCC operation from 2D to 1D, it is a natural 

result of the data selection process and hence it does not involve any additional 

computations.  

2. Since we are choosing only the diagonal elements, the number of computations per block 

is reduced to a great extent i.e. if we have a template image of size Tx x Ty the total 

computations per block in the numerator now reduces from (Tx x Ty) additions and 

multiplications to only Tx(=Ty) additions and multiplications per shift. This reduction in 

the computation is even more significant when the template and reference image sizes are 

very large. 

  

Another advantage of the modified NCC algorithm is in situations where the information of the 

camera systems capturing the images is not known and brute force shifts have to be applied. This 

modified algorithm will be a good solution for such cases.  

 

In some pathological cases the images or particular template blocks might not have a lot of 

features like edges and contours or the features may all be located on the upper or lower 

triangular side. In such situations just using the diagonal elements to perform the NCC algorithm 

might not work. The solution to this problem may be as simple as using the off-diagonal elements 

instead of the diagonal elements. However in most practical applications we always have images 

with some features on the diagonal element so using all the pixels in a template image block is 

unnecessary as it will only add to the computation without producing any significant 

improvements in the results.   

 

4. HARDWARE ARCHITECTURE 

 
In a standard CMOS image sensor there are photodiodes that produce electrons proportional to 

the amount of light intensity that strikes them. This is then converted into voltage levels which are 

read out by the readout circuitry. In order to remove noise, a process called correlated double 

sampling (CDS) is used. After this the signals are amplified. All this happens in the analog 

domain. These signals are then digitized using analog-to-digital converters (ADCs) and stored in 

memory or are sent to digital processors for further processing. So the signal for the most part is 

in the analog domain and we can utilize this to our advantage to perform analog processing. 

  

With this in mind we have come up with a new imaging architecture which would best utilize the 

features of both analog and digital domains. Figure 1 shows a top level block diagram of the 

proposed architecture. In this architecture we have the digital system accessing the sensor and it is 

pre-processing, digitizing and storing the images in memory as before. However we now have an 

analog system that is accessing the analog data on the sensor, processing it and then feeding it 

into a digital machine for any further computations. By doing this we have separated the process 

of image acquisition which is being done by a digital system and image processing which is being 

done by an analog system. The biggest advantage of such an architecture is that they are operating 

in parallel i.e. the image acquisition is independent of the processing. This is not true in the case 

of completely digital systems. In a fully digital system the image processing operation cannot 
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start until the images have been completely acquired and stored in memory.  In this hybrid system 

the analog block is performing the computationally intensive task of running the NCC algorithm 

as and when the image data is being read off the sensor. This means that by the time the digital 

system has acquired the images the analog processor would have finished its computation and the 

outputs will be ready to be used by the digital system.   

 

Another important point to be noted is that the analog processing block is not in the signal plane 

but in the control plane. One of the biggest disadvantages of an analog system is the amount of 

noise added by it. However in this kind of an architecture the analog block is not responsible for 

signal acquisition and hence the problem of signal being corrupted by noise vanishes 

immediately.  

 

 
 

Figure 1: Proposed Architecture for the new Imaging systems 

 

4.1. Implementing the modified NCC algorithm  

 
Figure 2 shows the implementation of the modified NCC algorithm in the new imaging 

architecture. We have a digital system (shown on the left) which is accessing the sensor data, pre-

processing, digitizing and storing it in memory. We have N analog channels which read the 

analog data from the sensor directly.  

 

These N analog channels can be grouped into pairs in which one (odd numbered) channel is used 

to read the reference image data and the other (even numbered) channel is used to read template 

image data. The CMOS image sensors are capable of accessing individual pixel data. The readout 

circuitry is used to selectively read the diagonal elements of template and reference image blocks.  

Once the analog data has been read from the sensor we have it available to perform the NCC 

algorithm. According to eq. (1) in order to perform the NCC algorithm we first need a zero mean 

template image and zero mean reference image. In the case of digital systems it is not hard to 

compute the zero mean images from stored information. However in the new architecture we are 

directly accessing the analog data from the sensor and we would have to wait for an entire block 

of data to be read out in order to compute the mean and subtract it from the original signal. This 

would be a waste of processing time since this has to be done multiple times i.e. for each image 

block. In order to get around this problem we propose a second modification to the NCC 

algorithm. Here we use moving averages instead of regular averages and the moving average is 

subtracted from the original signal. The moving average circuit can be implemented as a low pass 

filter. The analog data from the sensor is passed through the moving average filter, the output of 

which is subtracted from the original signal. This is then fed to the multiplier and integrator which 

together perform the correlation operation. This calculates the numerator of the NCC algorithm. 

For calculating the denominator we plan to use the sum table method. This can be done efficiently 

by a digital system. So once the numerator calculation is done the analog signal is sampled and 

then fed into a DSP which normalizes the numerator and performs the decision making. The 

output will be disparity values in the X and Y direction. We also ran MATLAB simulations to 
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ensure that a change from an actual zero-mean image to one with moving averages does not affect 

the performance of the NCC algorithm. 

 

 
 

Figure 2: Implementation of NCC algorithm in the new Imaging architecture 

 

5. EXPERIMENTAL RESULTS 

 
In this section we compare the performance of the modified NCC algorithm to the original 

algorithm to show that the modified algorithm is faster and has a performance similar to the 

original algorithm. Since the modified algorithm has been developed to be implemented in analog 

hardware various other simulations are run that measures the performance of the modified 

algorithm.  

 

We have run simulations on 15 sets of unrectified, grayscale stereo image pairs. These images 

have been captured under different illumination conditions which include incandescent light 

(In_Incd), outside bright light (Out_brt), outside low light (Out_clds), outside mixed shade 

lighting (Out_mxdshd). This allows us to test the performance of the algorithm in a more robust 

manner. All simulations have been done in MATLAB.  

 

5.1. Cropping the template image  

 
The stereo cameras have overlapping fields of view but the amount of overlap depends on the 

distance between the centres of the two cameras. In this work we have considered cameras whose 

centres are 6.5mm apart. Their hyperfocal distances are 70cm which means that all objects which 

are 35cm and beyond are in sharp focus. Since the distance between the centres are 6.5mm there 

will be some points in the scene that will be present in one of the images but not in the other. 

These points cannot be used for alignment and hence one of the images (template image) is 

cropped around the edges. 

 

 

 



324 Computer Science & Information Technology (CS & IT) 

 

5.2. Evaluating the performance of the algorithms 
 

The performance of the image alignment algorithms can be evaluated in a variety of different 

ways. Here the correlation coefficient is used as a performance measure. Once the final disparity 

values for all the template blocks are obtained, each template block is shifted by the disparity 

values obtained for that block. In order to get a uniform disparity variation across the entire image 

an interpolation technique is used. At the end of this process the two stereo images have been 

aligned. The correlation coefficient is calculated between the two aligned images and it is used as 

an indicator of the performance of the algorithm.   

 

Figure 3 shows a comparison of the correlation coefficients obtained for 15 stereo image pairs by 

using the original NCC algorithm and the modified NCC algorithm. Each stereo image pair has a 

size of 1080x1920 pixels. The cropping of the template image around the edges is not more than 

10% of the entire image size. The template block size chosen here is 128x128 pixels. As can be 

seen from the figure the performance of the modified NCC algorithm is very close to the original 

NCC algorithm. The performance was also tested for various other template block sizes and 

uniform performance was obtained for all. A speedup of 2x in MATLAB run time was observed 

for the modified NCC algorithm over the original algorithm.  

 

 

Figure 3: Performance comparison of the original NCC algorithm to modified NCC algorithm 

It has to be noted that the objective of the above simulation is to compare the performance of the 

algorithms and not the digital and analog implementation of the algorithms.  

Another performance measure that was used was the percentage improvement in the correlation 

coefficient values of the stereo images before and after alignment. Figure 4 shows these results. 

As it can be seen there is significant improvement in the correlation coefficients for all the 

images. It must be noted that for some images we see a very low percentage improvement. This is 

not because of the performance of the algorithm but because the input images were themselves 

almost aligned before the algorithm was applied.  
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Figure 4: Percentage improvement in the correlation coefficient after alignment using modified NCC 

algorithm 

As an example of the performance the modified NCC algorithm two figures 5 and 6 are shown. 

Figure 5 shows an overlap of a pair of stereo images before alignment. The areas of magenta and 

green show the areas of misalignment between the two images. The correlation coefficient 

measured for these two images before alignment is 0.7247. Figure 6 shows the overlap of two 

images after aligning them using the modified NCC algorithm. As can be seen from the figure 

there is hardly any misalignment between the two images.  The correlation coefficient observed in 

this case is 0.9923.  

 

 

Figure 5: Overlap of two stereo images before alignment 
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Figure 6: Overlap of the two stereo images after alignment 

Figure 7 and Figure 8 shows the disparity variation for the image shown in figure 5 and 6 in X 

and Y direction respectively. These disparity values have been obtained through the modified 

NCC algorithm. The disparity values have been colour coded and the colour bar indicates the 

different disparity values. The disparity values vary from 18 to 33 for Figure 7 in the X 

(horizontal) direction. The disparity values vary from 43 to 53 for Figure 8 in the Y (vertical) 

direction. 

 

 

Figure 7: Disparity variation in the X(Horizontal) direction 
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Figure 8: Disparity variation in the Y(Vertical) direction 

5.3. Measuring the robustness of the modified NCC algorithm  

We know that the NCC algorithm is robust to changes in the intensity values of the images. Here 

we try to measure the robustness of the modified NCC algorithm to changes in intensity values by 

changing the intensity values of one of the two stereo images. In the first case we reduced the 

intensity values of the template image by 90% uniformly across the image and used the modified 

NCC algorithm to align the images. This analysis addressed the fact that the illumination of a 

scene might change between the capture of two stereo images and the change in illumination was 

assumed to be uniform. However there might be rare situations where illumination on parts of the 

scene varies between captures of two stereo images. To address this issue we randomly varied the 

intensity values of the template image and analysed the performance of the modified NCC 

algorithm under these conditions as well. Figure 9 shows the results of these analyses. As it can 

be seen the modified NCC algorithm is very robust to changes in the image intensity values. 

  

 

Figure 9: Robustness of the modified NCC algorithm to changes in image intensity values 
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Since the algorithm has been developed to be implemented in analog hardware it is very 

important to characterize the performance of the algorithm in the presence of noise. The two 

analog circuits that have been considered to be the primary contributors of noise are the multiplier 

and the integrator. In order to simulate the addition of noise by analog circuitry we first find the 

RMS value of the image intensity values. We multiply this RMS value by a number which 

indicates the percentage of noise being added by the circuit. This value is then multiplied by a 

random number picked from a Gaussian distribution. The outcome of this process is a noise value 

which is then added to the original image intensity. In our simulations it was found that the 

algorithm is more sensitive to the noise added by the multiplier than that by the integrator. Hence 

we maintain the noise added by the integrator at 20% and vary the amount of noise added by the 

multiplier. Figure 10 shows this performance variation. We have shown the performance for 3 

different noise values added by the multiplier, 1%, 10% and 20%. As it can be seen the 

performance of the modified NCC algorithm is still good in the presence of noise added by the 

analog circuitry.  

 

 
 

Figure 10: Performance of the modified NCC algorithm in the presence of Noise 

5.4. Dynamic Range requirements and Power analysis 

The amount of noise that can be tolerated by a circuit determines the dynamic range requirements 

for that circuit. The noise analyses done above will give us an idea of the dynamic range 

requirements for the analog circuits to perform the NCC operation. Analog circuits can easily 

achieve dynamic ranges of 40dB. This corresponds to a noise level of 1%. From Figure 10 we see 

that the modified NCC algorithm has excellent performance for a noise level of 1%.  

 

The dynamic range requirements also dictates the power consumptions for analog circuits. The 4 

major analog circuits required to implement the modified NCC operation are the low pass filter, 

analog summer, multiplier and integrator. We have performed initial circuit simulations for these 

components. Table 1 shown below gives approximate values of the power consumption for these 

components calculated for a dynamic range of 40dB based on these simulations. Here we assume 

that we have 64 analog channels in the architecture shown in Figure 2 and the number of 

components required are calculated based on that. The actual power consumptions can only be 

obtained once the components are realized and integrated.  
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Table 1: Approximate power consumption values for the analog circuits 

Component Quantity Power Consumption 

LPF 64 2.8mW/LPF*64 = 179.2mW 

Summer 64 0.549mW/sum*64=35.13mW 

Multiplier 32   1.83µW/mul*32 = 0.058mW 

Integrators 32 0.024mW/int*32 = 0.768mW 

 

The total power consumption by the analog circuitry is 215.15mW. Based on some of the digital 

implementations such as [11] and [12], we see that the power consumption for an analog 

implementation will be very low compared to that of a digital implementation. This shows that 

we have significant power savings as well.  

 

5.5. A Note on Computation Time 

The modifications proposed to the NCC algorithm contribute to a significant reduction in the 

computation of the algorithm. Simulation results show a 50% reduction in computation time for 

the modified NCC algorithm over the original algorithm. The other factors which add to the 

reduction of computation time are the novel imaging architecture and analog processing. In the 

new imaging architecture the analog processor works in parallel with the digital acquisition 

system and hence it does not have to wait for the entire image to be acquired before the 

processing starts. By the time the acquisition is done the analog processor would have finished its 

computation. So the image acquisition time can also be added towards the reduction in 

computation time. The implementation of the NCC algorithm is being done in analog hardware. 

The analog processor is not limited by the data converters (ADCs) or logic delays. The settling 

times of well-designed analog circuits are very small. Hence an analog implementation of the 

NCC algorithm would be faster than a digital implementation and would contribute towards a 

further reduction in computation time.  

 

6. CONCLUSIONS 

 
In this work we propose analog signal processing as a solution for handling the high 

computational load of some of the image processing algorithms while simultaneously meeting the 

reduced SWaP requirements. The analog processor will be used to augment the digital processor 

and work in parallel with it to perform key computations, making the system faster and more 

efficient. We implement a highly computational stereo correspondence algorithm to align stereo 

image pairs. Two novel modifications were proposed to the NCC algorithm which reduced the 

computation and made the algorithm efficiently implementable in analog hardware. The modified 

algorithm has a 50% reduction in MATLAB computation time over the original algorithm. The 

actual analog hardware implementation of the algorithm and the new imaging architecture will 

contribute to a further reduction in computation time as compared to a digital implementation. An 

approximate power consumption of 215.15mW for obtained for the analog correlation block. 

Various other simulations were also run to check the robustness and performance of the 

algorithm. The experimental results obtained are very promising and we believe analog 

processing will be a viable solution to these problems. As a part of the future work and as a proof-

of-concept the analog image correlator circuit will be built from commercially available off the 

shelf components. A test plan will be setup for this circuit.  Once the required results are obtained, 

the next step will be to build the architecture in silicon.  
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