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ABSTRACT 

 

In this paper, the unsteady motion of a spherical particle rolling down an inclined tube in a 

Newtonian fluid for a range of Reynolds numbers was solved using a simulation method called 

the Differential Transformation Method (DTM). The concept of differential transformation is 

briefly introduced, and then we employed it to derive solution of nonlinear equation. The 

obtained results for displacement, velocity and acceleration of the motion from DTM are 

compared with those from numerical solution to verify the accuracy of the proposed method.  

The effects of particle diameter (size), continues phase viscosity and inclination angles was 

studied. As an important result it was found that the inclination angle does not affect the 

acceleration duration. The results reveal that the Differential Transformation Method can 

achieve suitable results in predicting the solution of such problems. 
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1. INTRODUCTION 

 
The description of the motion of immersed bodies in fluids is present in several manufacturing 
processes, e.g. sediment transport and deposition in pipe lines, alluvial channels, chemical 
engineering and powder process [1-6]. Several works could be found in technical literature which 
investigated the spherical particles in low and high concentration [7-9]. A particle falling or 
rolling down a plane in a fluid under the influence of gravity will accelerate until the gravitational 
force is balanced by the resistance forces that include buoyancy and drag. The constant velocity 
reached at that stage is called the “terminal velocity” or “settling velocity”. Knowledge of the 
terminal velocity of solids falling in liquids is required in many industrial applications. Typical 
examples include hydraulic transport slurry systems for coal and ore transportation, thickeners, 
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mineral processing, solid–liquid mixing, fluidization equipment, drilling for oil and gas, 
geothermal drilling.The resistive drag force depends upon drag coefficient. Drag coefficient and 
terminal velocities of particles are most important design parameters in engineering applications. 
There have been several attempts to relate the drag coefficient to the Reynolds number. The most 

comprehensive equation set for predicting 
DC  from Re for Newtonian fluids has been published 

by Clift et al. [10], Khan and Richardson [11], Chhabra [12] and Hartman and Yutes [13]. 
Comparing between most of these relationships for spheres, demonstrates quite low deviations 
[14]. 
 
The most of mentioned applications involve the description of the particle position, velocity and 
acceleration during time e.g. classification, centrifugal and gravity collection or separation, where 
it is often necessary to determine the trajectories of particle accelerating in a fluid for proposes of 
design or improved operation [15,16]. Unfortunately, there are few studies in the literature in the 
filled of rolling particles and the major part of the available investigations are related to the use of 
a rolling ball viscometer to measure viscosity of liquids [5,6]. Hasan [7] studied the role of wall 
effect on the rolling velocity of spherical particles in Newtonian media. He found a very limited 
correlation for (d/D) > 0.707 as follows: 
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Where, Reynolds number is defined as follow: 
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Where Re, d, and D, are the particle Reynolds number, particle diameter and tube inner diameter 
respectively. Chhabra et al. [12] presented a valuable experimental work for drag on spheres in 
rolling motion in inclined smooth tubes. They used an enough number of sphere made of glass 
and steel with four smooth walled glass tubes of different diameter. They used numerous aqueous 
solutions of glycerol and glucose syrup to cover a wide range of Reynolds number. The angles of 
inclination and sphere-to-tube diameter ratios were varied from 3 to 30 and 0.114 to 0.58, 

respectively. Therefore, the Reynolds number range was 610− < Re < 3000. They had 900 data 

points to define their empirical correlations. It was concluded that the sphere-to-wall diameter 
ratio (d/D), is not a significant parameter at the 95% confidence level. Consequently, the authors 
presented a three-part equation as follows: 
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Eqs. (3-5) predict the transition points within about 5%, and correlates the experimental set of 
data within an average error of 8%. To describe a general correlation covering the experimental 
data we describe a new correlation using Chhabra et al. experimental points [12] as: 
 

                                                        
                                                           (6)                                                                            

The third term in the right hand side of the Eq. (6) is important in low Reynolds number and its 
effect vanish by increasing of the Reynolds number and reduction of the drag coefficient. Eq. (6) 
is in very good agreement with results of the reference [12] and correlates the data with average 
error of 8.4883%.The maximum difference between values of Eqs. (5) and (6), and experimental 
data, is related to the transient region where the Reynolds number is in the range of 

5.4Re108.5 2 ≤≤× − .Aside from mentioned work of Chhabra et al. [12], all other surveys of 

the rolling motion of the particles are related to open channels [12–15]. In reality, when a sphere 
is rolling in a tube, the wall exerts an extra retardation effect on it due to upward motion of the 
fluid through the eccentric annular gap between the particle and the wall this issue distinguishes 
the mechanism of rolling in tubes from open channels. It is clean that a few studies are performed 
on rolling motion of particles, especially in tubes while it is an important practical issue both in 
nature and industry. Moreover, most of the previous studies in particles motion and 
sedimentations are experimental or numerical. However, an exact analytical expression is more 
opportune for engineering calculations, and is also the evident starting point for a better 
understanding of the relationship between the physical properties of the sphere-fluid combination 
and the accelerated motion of the sphere. In addition, In contrast to steady-state motion of 
particles much less has been reported about the acceleration motion of spherical particles in 
incompressible Newtonian fluids. The accelerated motion is relevant to many processes such as 
particle classification, centrifugal and gravity particle collection and/or separation, where it is 
often necessary to determine the trajectories of particles accelerating in a fluid [14]. Furthermore, 
for other particular situations, like viscosity measurement using the falling-ball method or rain-
drop terminal velocity measurement it is necessary to know the time and distance required for 
particles to reach their terminal velocities. In this case study, similarity transformation has been 
used to reduce the governing differential equations into an ordinary non-linear differential 
equation. In most cases, these problems do not admit analytical solution, so these equations 
should be solved using special techniques. The differential transform method is based on Taylor 
expansion. It constructs an analytical solution in the form of a polynomial. It is different from the 
traditional high order Taylor series method, which requires symbolic computation of the 
necessary derivatives of the data functions. The Taylor series method is computationally taken 
long time for large orders. The differential transform is an iterative procedure for obtaining 
analytic Taylor series solutions of differential equations. Differential transform has the inherent 
ability to deal with nonlinear problems, and consequently Chiou [17] applied the Taylor 
transform to solve non-linear vibration problems. Furthermore, the method may be employed for 
the solution of both ordinary and partial differential equations. Jang et al. [18] applied the two- 
dimensional differential transform method to the solution of partial differential equations. Finally, 
Hassan [19] adopted the Differential Transformation Method to solve some problems. The 
method was successfully applied to various practical problems [20-21].  
 
The aim of current study is the analytically investigation of acceleration motion of a spherical 
particle rolling down an inclined boundary with drag coefficient in form of Eq. (3), using the 
Differential Transformation Method (DTM). Investigation and solution of falling objects’ 
equation is a new application for DTM which was used for some other engineering problems.  
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2. PROBLEM DEFINITION 

 
Consider a spherical particle of diameter d and density of ρs rolling down a smooth tube having 
angle of inclination a with the horizontal, and filled with an incompressible Newtonian fluid of 
density ρ Let u represent the velocity of the sphere at any instant t and g the acceleration due to 
gravity. Figure. 1 illustrates a schematic view of the present problem.  

 

 
 

Figure.1 a schematic figure of current problem [15] 

 
The forces acting on the spheres are the fluid-drag, FD, fluid lift force, FL, buoyancy force, FB, 
gravitational force, Fg, solid–solid resistance force due to rolling, FR, virtual mass force, FVM due 
to relative acceleration of the fluid around the particle. It is reasonable to postulate that since 
smooth walled tubes have been studied, FR is expected to be negligible (or alternately FD + FR can 
be regarded as the total resistance to sphere motion, which is included in the drag coefficient). 
The all of detail of problem was explained at [15].The equation of motion is gained as follow 
from [15]: 
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To simplify the post processes of the problem we had generated four coefficients in the equation 
above. Therefore, Eq. (7) is reduced to: 
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With change of variation as bellow we obtain velocity, 
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By substituting Eq. (11) into Eq. (6) we will have:  
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Eqs.(8) and (14) are non-linear ordinary differential equations which could be solved by 
numerical techniques such Runge–Kutta method. We employed DTM and compared our results 
with numerical solution of 4th order Runge–Kutta method using the Maple package. 
 

3. DIFFERENTIAL TRANSFORMATION METHOD 

 
We suppose )(τx to be analytic function in a domain D  and 

iττ = represent any point in D . The 

function )(τx is then represented by one power series whose center is located at
iτ . The Taylor 

series expansion function of )(τx is in the form of [23]:  
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The particular case of Eq. (13) when 0=iτ  is referred to as the Maclaurin series of )(τx  and is 

expressed as:  
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As explained in [25-31] the differential transformation of the function )(τx  is defined as follows:  
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Where, )(τx is the original function and )(kX is the transformed function. The differential 

spectrum of )(kX  is confined within the interval [ ]H,0∈τ , where H is a constant. The 

differential inverse transform of )(kX is defined as follows:  
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It is clear that the concept of differential transformation is based upon the Taylor series 

expansion. The values of function )(kX at values of argument k are referred to as discrete, i.e. 

)0(X  is known as the zero discrete, )1(X  as the first discrete, etc. The more discrete available, 

the more precise it is possible to restore the unknown function. The function )(τx consists of the 

T-function )(kX , and its value is given by the sum of the T-function with  ً◌ ( )k

H
τ as its 

coefficient. In real applications, at the right choice of constant H , the larger values of argument 

k  the discrete of spectrum reduce rapidly. The function )(τx is expressed by a finite series and 

Eq. (16) can be written as:  
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Eq. (19) implies that the value ∞→+= 1nk  is negligible. 

 

If )(tu and )(tv are two uncorrelated functions with time t  where )(kU and )(kV are the 

transformed functions corresponding to )(tu and )(tv then we can easily proof the fundamental 

mathematics operations executed by differential transformation .The fundamental mathematical 
operations performed by differential transformation method are listed in Table 1 [25-30]. 
 
 

Table 1. The fundamental operations of differential transformation method 

Original function Transformed function 
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4. APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD 

 
Now we apply Differential Transformation Method into Eq. (8) for find )(tw  as displacement. 

Taking the differential transform of Eq. (16) with respect to t according table 1 gives:  
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By suppose 
0W  and 1W  are apparent from boundary conditions by solving Eq. (20) respect

2+kW , 

we will have:  
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The above process is continuous. Substituting Eq. (20-24) into the main equation based on DTM, 
Eq. (19), it can be obtained the closed form of the solutions,  
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Substituting Eq. (21-24) into the main equation based on DTM, it can be obtained the closed form 
of the solutions. In this stage for achieve higher accuracy we use sub-domain technique, i.e. the 
domain of t  should be divided into some adequate intervals and the values at the end of each 

interval will be the initial values of next one. For example for first sub-domain assume that 
distance of each interval is 0.005. For first interval, 005.00 →   boundary conditions are From 

boundary conditions in Eq. (8) at point 0=t . By exerting transformation, we will have:   
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The other boundary conditions are considered as follow:  
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As mentioned above for next interval, 10.0005.0 → , new boundary conditions are:  
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The next boundary condition is considered as follow:  
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For this interval function )(tw  is represented by power series whose center is located at 005.0 , by 

means that in this power series t  convert to )005.0( −t .   

As we can see bellow in similar case for achieves the solution for )(tu as velocity we should 

apply DTM on Eq. (14) to find transformed function. 
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By assuming that 
0U  is apparent from boundary condition by solving Eq. (30) respect

1+kU , we 

will have:  
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As mentioned above this process is continuous. By substituting Eq. (31-35) into Eq. (19), closed 
form of the solutions is,  
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And for achieve higher accuracy we use sub-domain technique as described above. By 

substituting Eqs. (9-12) into Eq. (25) and Eq. (36), an exact solution for )(tw and )(tu  can be 

obtained which is only related to the particle and the fluid properties. 
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5. RESULTS AND DISCUSSION 

 
The mentioned method was applied for real combination of solid-fluid. A single Aluminum 
spherical particle with versus diameter was assumed to roll down a smooth inclined plane in an 
infinity medium of Ethylene–glycol, glycerin solution and water. Required physical properties of 
selected materials are given in Table 2.  
 

Table 2 Physical properties of materials 

Material Density  Viscosity  

Water 996.51 0.001 

Ethylene–glycol 1111.40 0.0157 

Glycerin 1259.90  0.779 

Aluminum 2702.0 - 

 

In the modeling, Aluminum with density of 
sρ = 2702.00 kg/m3is used for dispersed phase 

(particle).Inserting above properties into Eqs.(9) to (12) ,different combinations are gained which 
are classified in Table 3.  

 
By substituting above coefficients in Eq. (8), and for four different inclination angles, twelve 
different nonlinear equations are achieved. Inclination angles were selected to be 5˚, 15˚, 22˚ and 
30˚.  Differential Transformation Method was applied to gained equations and results were 
compared with numerical method. The influence of particle size is studied where the diameter of 

the particles is varied in the range of 1 mm < pd < 3 mm. Figs. (2 - 4) shown the variations of the 

displacement and velocity and acceleration for three different particles rolling in a tube inclined 
with the angle of 15˚ and filled with the water.  
 

 
 

Figure.2  displacement variation for three spherical particles rolling in a tube filled with the water 
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Figure.3 velocity variation for three spherical particles rolling in a tube filled with the water 

 

 
 

Figure.4 Acceleration variation for three spherical particles rolling in a tube filled with the water 

 
These figures clearly illustrate that how different diameters affect the displacement and velocity 
and acceleration of particles while other conditions are equivalent.  Observably, it is shown that 
the value of the displacement and velocity and acceleration in a rolling procedure is significantly 
increased with adding to the particle size. The variation of displacement and velocity and 
acceleration of the particle versus time for the different inclination angles are shown in Figs. (5-
7).  
 

 
 

Figure.5 displacement variation of a spherical particle rolling in a tube for different angles 
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Figure.6 Velocity variation of a spherical particle rolling in a tube for different angles 

 

 
 

Figure.7 Acceleration variation of a spherical particle rolling in a tube for different angles 

 
For a given the fluid viscosity, by increasing inclination angle, displacement and acceleration 
duration are increasing. Results show that increasing of inclination angle increases the terminal 
velocity as well as acceleration and displacement. Outcomes illustrated that higher acceleration is 
obtained for larger inclination angle. Variable displacement and velocity for sphere which its 
fluid is water, results of the present analysis are tabulated and comprised with the numerical 
solution obtained by fourth-order Runge–Kutta method in Table 4 and 5. 
 

Table 4 the )(tu  obtained from DTM and NS for water, α = 15˚, d=1mm 

t UDTM UNS Absolute 

Error(UDTM- UNS) 

0 0 0 0 

0.05 0.02047928110 0.02047930816 2.70611E-08 

0.1 0.02499292820 0.02499294991 2.17E-08 

0.15 0.02589242595 0.02589245023 2.42859E-08 

0.2 0.02606797450 0.02606799339  1.88962E-08 

0.25 0.02610209443 0.02610211188 1.74534E-08 

0.3 0.02610872071 0.02610873515 1.44461E-08 

0.35 0.02611000738 0.02611002114 1.38E-08 

0.4 0.02611025723 0.02611026728 1.01E-08 

0.45 0.02611030573 0.02611031057 4.84E-09 

0.5 0.02611031515 0.02611032008 4.93E-09 
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Table 5 the )(tw   obtained from DTM and NS for water, α = 15˚, d=1mm 

T WDTM WNS Absolute 

Error(WDTM- WNS) 

0 0 0 0 

0.05 0.000629372276 0.000629371444 8.32E-10 

0.1 0.001794953256 0.001794952721 5.35E-10 

0.15 0.003072942044 0.003072941443 6.01E-10 

0.2 0.004373099347 0.004373098915 4.32E-10 

0.25 0.005677574236 0.005677573848 3.88E-10 

0.3 0.006982887961 0.006982887666 2.95E-10 

0.35 0.008288364581 0.008288364307 2.74E-10 

0.4 0.009593872830 0.009593872669 1.61E-10 

0.45 0.01089938727 0.010989387220 5E-11 

0.5 0.01220490284 0.012204902801 3.9E-11 

 
 Presented results demonstrate an excellent agreement between DTM and numerical solution. In 
Figs.(8,9) the agreement between DTM and numerical solution for displacement and velocity of 

Eq.(8) when the fluid is water, α= 15˚, mmd p 1=  is shown. 

 
 

Figure.8 DTM and numerical solutions of Eq. (8) when the fluid is water, α = 15˚, d=1mm 

 

 
 

Figure.9 DTM and numerical solutions of Eq. (8) when the fluid is water, α= 15˚, d=1mm 

 
In this case, a very interesting agreement between the results of two methods is observed which 
confirms the excellent validity of the DTM. 

 

 



Computer Science & Information Technology (CS & IT)                                 243 

 
 

6. CONCLUSIONS 

 
In this paper, Differential Transformation Method (DTM) is applied to obtain the solution of the 
unsteady motion of a spherical particle rolling down an inclined tube in a Newtonian fluid. 
Equation was solved generally and for some real combinations of solid-liquid. Instantaneous 
velocity, acceleration and position were obtained as results and outcomes were compared with 
Runge–Kutta method solution. Very good agreement has been seen between numerical and 
current analytical method. Results show that for a given condition of particle and fluid, an 
increase in inclination angle, α, results in an increase in terminal displacement and velocity and 
acceleration. Current work approved the simplicity and capability of Differential Transformation 
Method. Solution of equation of motion for an object rolling down an inclined boundary is a new 
application of DTM and could be used in wide area of scientific problems, especially hydraulic 
and sedimentation engineering. 
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