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ABSTRACT 
 
Biogeography-based optimization (BBO) is a new population-based evolutionary algorithm and 

one of meta-heuristic algorithms. This technique is based on an old mathematical study that 

explains the geographical distribution of biological organisms. The first original form of BBO 

was introduced in 2008 and known as a partial migration based BBO. Few months later, BBO 

was re-introduced again with additional three other forms and known as single, simplified 

partial, and simplified single migration based BBOs. Then a lot of modifications were employed 

to enhance the performance of BBO. However, the literature lacks the explanations and the 

reasons on which the modifications are based on. This paper tries to clarify this issue by making 

a comparison between the four original BBO algorithms through a variety of benchmark 

functions with different dimensions and complexities. The results show that both single and 

simplified single migration based BBOs are faster, but have less performance as compared to 

the others. The comparison between the partial and the simplified partial migration based BBOs 

shows that the preference depends on the population size, problem’s complexity and dimensions 

and the values of the upper and lower side constraints. The partial migration model wins when 

these factors, except population size, are increased, and vice versa for the simplified partial 

migration model. The results can be used as a foundation and a first step of modification for 

enhancing any proposed modification on BBO including the existing modifications that are 

described in literature. 
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1. INTRODUCTION 

 
The science ofbiology becomes one of the main resources of inspiration to develop the modern 

optimization techniques, such as ant colony optimization (ACO), bee colony optimization (BCO), 

wasp swarm optimization (WSO), bacterial foraging optimization (BFO), genetic algorithm (GA), 

evolutionary strategy (ES), differential evolution (DE), particle swarm optimization (PSO), etc. 

Biogeography-based optimization (BBO) is a new population-based evolutionary algorithm (EA) 



Computer Science & Information Technology (CS & IT)                                 122 

 

that was introduced by Dan Simon in 2008 [1], and its performance was evaluated based on 14 

benchmark functions, and then was tested to solve a real sensor selection problem for aircraft 

engine health estimation. BBO did well and proved that it is a very competitive method as 

compared to the other EAs. Since then, a lot of researches have been conducted, some of them to 

solve practical problems such as economic emission load dispatch [20], land cover feature 

extraction [21], and unit commitment [22]; while the others were focused to enhance and modify 

its performance [23,24,25,26,27,29,33]. 

 

The objective of this paper is to outline a clear path for selecting the best algorithm among the 

four original forms, and thus, any present modification with wrong selected form can be reviewed 

again with this guidance to enhance its performance. In addition, it can be used as a foundation 

for any future modification. 

 

This paper is organized as follows: Section II gives a quick introduction about the theory of island 

biogeography to be as a strong basis to understand the principles of the original BBOs which are 

described in Section III; after that, Section IV gives a comparison between the original forms of 

BBO. Section V is set for the conclusions. 

 

2. THE THEORY OF ISLAND BIOGEOGRAPHY 

 
Biogeography is a branch of biology, and it is a synthetic discipline, relying heavily on theory and 

data from ecology, population biology, systematics, evolutionary biology, and the earth sciences 

[4]. Biogeography seeks to describe, analyze and explain the geographic patterns and changing 

distributions of ecosystems and fossil species of plants (flora) and animals (fauna) through 

geological space and time [5, 6].  

 

Island, in biogeography, is any area of suitable habitat (local environment occupied by an 

organism [7]) surrounded by an expense of unsuitable habitat and is endowed with exceptionally 

rich reservoirs of endemic, exclusive, strange and relict species [8]. Islands as ecological systems 

have such salient features as simple biotas, varying combinations of biotic and abiotic factors, and 

variability in isolation, shape, and size [9,14]. With these characteristics, islands represent 

themselves as natural experiments, and got highly attentions by the nineteenth century naturalists 

of the first rank, such as Alfred R. Wallace in East Indies [10], Charles Darwin in Galapagos 

Islands [11] and Joseph D. Hooker in Southern Ocean [12]. 

 

Island biogeography is a special field within biogeography science. This field was initially started 

by the ecologists Robert H. MacArthur and Edward O. Wilson in 1960 to 1963 with their 

published paper [2], and continued their studies till 1967 when the final achievement were 

presented in [3]; and recently, this theory has been revisited and expanded more in [13]. 

 

Island biogeography theory fully integrates much of ecology, population biology, evolution, and 

paleontology, with important implications for conservation of species [13]. It was developed with 

mathematical models for attempting to translate the ecology and biogeography from the 

traditional view to analytical view, and answering why some islands are rich of species while the 

others are poor, by establishing and explaining the biotic (like predation, competition and 

interactions between species) and abiotic (like wind, water, sunlight, temperature, pressure and 

soil) factors that affect the species richness of natural communities in an island [15]. Thus, it 

gives the ability to predict the species counts that migrate between islands and then can find the 

optimum conservation areas [4,5,6,8]. 
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The equilibrium theory of island biogeography proposes that the number of inhabited species on 

an island is based on the dynamic equilibrium between new immigrated species onto an island 

and the extinct species out from that island [2,3,13].

 

Fig. 1 graphically represents the equilibrium model 

rate λ and emigration (or extinction) rate 

any proper function [4,16,17], while the equilibrium loca

based on the type of rate function

source and recipient islands [4,3,13]. 

 

Figure 1. Equilibrium model of a biota of a 

 

I and E are the maximum possible immigration and emigration rates, respectively. 

number of species at equilibrium,

maximum number of species on that island.

 

I occurs when there is no colonization process, or in other word, the island is empty of any 

species and it will offer maximum opportunity to the species on the other islands for immigrating 

to settle on it; and as the number of arrived species on that island i

settlement will decrease and thus the immigration rate will decrease too. Also, as 

species density increases, so the predation, competition and parasitism factors will increase; and 

as a result, the emigration rate µ

its minimum value [18].  

 

MacArthur and Wilson [2,3] simplified the

I=E as shown in Fig. 2 with mathematical expressions in order to 

migration process on a single island happens.

 

Now, let at time t, the recipient island has 

respectively the immigration and emigration rates at the present of 

the variation from ����� to ���� �
 
                        ���� � ∆�� 	 ������
 

Also, 
� can be found by using different methods. From the basic of trigonometry:
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Figure 2. Simplified equilibrium model of a biota of a single island 

 

Substituting Eq. 2 in Eq. 3 for ��: 
� 	 � �� � ��
��� (4) 

Eq. 4 can also be obtained by equalizing �� and �� rates at 
 �as follows: 

 �� 	 �
��� 
 (5) 

�� 	 1 � �� 	 � �1 � 

���� (6) 

 � 
 	 
�:    �� 	 ��    ⇒    � !1 � 
�
���" 	 �
��� 
� (7) 

Solving Eq. 7 for 
� gives Eq. 4; where at the intersection point, the island's biota will be at a state 

of dynamic equilibrium, and thus ���� � ∆�� 	 ����[1,3,17]. 

 

From Eq. 1, to have S at time �� � ∆�), one of the following three conditions should hold: 

 

1. S species at time t, and no immigration or emigration took place during the interval ∆�; 
2. (S - 1) species at time t, and one species immigrated; 

3. (S + 1) species at time t, and one species emigrated. 

 

To neglect the probability of more than one immigration or emigration, then ∆� has to be set with 

small value. As ∆� approaches 0, the ratio #∆$%∆& ' approaches �(����: 
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)$%�&�)& ≅ lim∆&→/ $%
)$%�&�)& ≅ ���� � ��

 

By considering the previous three
 

  ��( ��� 	 0���� � ����� � �������� � ����� � ��������� � ����� � �
The value of ��( ��� can also be determined by using a matrix technique [1].
 

Thus, using the known values of 

approximated as: 

���� �
Eq. 10 is the final form that has to be used in the program of BBO for calculating

 

For finding �����, Dan Simon in [1] used two methods; either by solving 

applying the following theorem: 

 

Theorem 1: The steady-state value for the probability of the number of each species is given by:
 

Where 1 and 12are computed as:
 1

12 	 
����
��� � 1 �
 
 

3. BIOGEOGRAPHY-BASED 

 
The involvement of the science of biogeography into BBO is that the general problem solution 

means the natural distribution of species [1]. Each island represents one solution, where the good 

solution in biogeography means that the island has many species, and the density of these species 

depends on the availability of good features offered by that island (the good things of bi

"living: trees, shrubs, meadow, diversity of prey, etc

humidity, water, area, etc" factors [19] 

solution islands [18]. Each feature 

independent variable of such a problem in BBO [30].

 

Island suitability index (ISI) depends on the availability of 

BBO, ISI is the dependent variable [30]. 

islands or individuals, then it can be expressed as�
�2 	 3�
�4
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The involvement of the science of biogeography into BBO is that the general problem solution 

of species [1]. Each island represents one solution, where the good 

solution in biogeography means that the island has many species, and the density of these species 
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The involvement of the science of biogeography into BBO is that the general problem solution 

of species [1]. Each island represents one solution, where the good 

solution in biogeography means that the island has many species, and the density of these species 

depends on the availability of good features offered by that island (the good things of biotic 

living: wind, temperature, 

), and vice versa for the poor 

), and represents the 

features on that island; and, in 

independent variables and k-

(14) 
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The algorithm of BBO consists of two main sub-algorithms, migration and mutation. 
 

The original forms of BBO depend on the type of the migration process, which are partial 

migration based (PMB-BBO), single migration based (SMB-BBO), simplified partial migration 

based (SPMB-BBO), and simplified single migration based (SSMB-BBO) [1,28]. 
 

3.1. Migration 
 

Considering Eq. 14, the high ISI for island irepresents a good solution, and also high ISI means 

large number of available species on that island, which forces immigration rate �� to be low and 

emigration rate �� to be high; while low ISI for island i represents a poor solution, which means a 

shortage indication in the availability of species on that island, where at this condition �� is high 

and �� is low.  
 

Referring to Fig. 2, S1 is located before
�, where �� is high, �� is low and the solution ISI1 is poor; 

while S2 is located after 

 , where �� is low, �� is high and the solution ISI2 is good. Thus, �� and �� are indications of poor and good solutions, respectively. 
 

In migration process, the high ISI islands share their features to modify the low ISI islands, where 

the islands of both sides are probabilistically selected. The high ISI islands become the source of 

modification, while the low ISI islands become the recipients to those emigrated species.  
 

Although the species will emigrate from the rich islands to the poor islands, this phenomena does 

not mean that the species will completely disappear from its home islands. However, only a few 

representatives emigrate [1]. Thus, the recipient islands are enhanced, and at the same time the 

source islands are kept away from any shortage on its richness of species. 
 

The migration process of the four original forms of BBO can be described as:- 
 

3.1.1. PMB-BBO Model: 

 

Let ISIi denote the ith population member and contains n features 

For each island ISIi (where i=1,2,3,…,k) 

For each SIV s (where s=1,2,3,…,n) 

 Use �2 to probabilistically select the immigrating island ISIi 

If rand < �2 
  For j=1 to k 

Use �G  to probabilistically decide whether to emigrate to ISIi 

   If ISIj is selected 

Randomly select an SIV σ from ISIj 

Replace a random SIV s in ISIi with SIV σ 

   end if 

  end for 

end if 

 next SIV  

next island 
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3.1.2. SMB-BBO Model: 

 

Let ISIi denote the ith population member and contains n features 

For each island ISIi (where i=1,2,3,…,k) 

Use �2 to probabilistically select the immigrating island ISIi 

 If rand < �2 
Pick a random SIV s (where s=1,2,3,…,n)  

For j=1 to k 

  Use �G to probabilistically decide whether to emigrate to ISIi 

  If ISIj is selected 

Randomly select an SIV σ from ISIj 

Replace a random SIV s in ISIi with SIV σ 

  end if 

end for 

 end if 

next island 
 

The simplified models (SPMB and SSMB) are similar to the previous normal models (PMB and 

SMB), except that the simplified models will always use the best obtained solution as the 

emigrating island instead of doing an internal loop checking. It is apparent that the simplified 

models have two conflicting issues. They are faster (less CPU time) because the internal looping 

is eliminated. However, they could trap in a local minima because they always depend on the best 

solution,and consequently the probability of finding other better solutions reduces. 

 

3.1.3. SPMB-BBO Model: 

 
Let ISIi denote the ith population member and contains n features 

For each island ISIi (where i=1,2,3,…,k) 

For each SIV s (where s=1,2,3,…,n) 

 Use �2 to probabilistically select the immigrating island ISIi 

 If rand < �2 
Select the best obtained solution as the emigrating island ISIbest 

If ISIbest is selected 

  Randomly select an SIV σ from ISIbest 

  Replace a random SIV s in ISIi with SIV σ 

end if 

 end if 

next SIV  

next island 
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3.1.4. SSMB-BBO Model: 

 

Let ISIi denote the ith population member and contains n features 

For each island ISIi (where i=1,2,3,…,k) 

Use �2 to probabilistically select the immigrating island ISIi 

If rand <�2 
 Pick a random SIV s (where s=1,2,3,…,n)  

 Select the best obtained solution as the emigrating island ISIbest    

 If ISIbest is selected 

Randomly select an SIV σ from ISIbest 

Replace a random SIV s in ISIi with SIV σ 

 end if  

end if 

next island

 

 

3.2. Mutation 

 
The features available on an island (i.e., n-SIV) can be changed dramatically due to random 

events called mutations [31], which forces 
� to deviate from its equilibrium value [1].  

 

Most observed mutations are harmful, like predators from other islands, tsunamis, volcanos, 

diseases or earthquakes, which are not directed to be useful [17]. On the other hand, there are 

some useful events that can enhance those n-SIV to give better solutions, such as wind-carrying 

seeds (wind pollination) or flotsams (shipwreck) [18]. 

 

In BBO, this mutation process is modeled as SIV mutation, where the mutation rate m can be 

determined by involving species count probabilities Ps into the following equation: 

 H 	 H��� �1 � �������   (15) 

Where  ���� 	 H I���� and  H��� is a user-defined maximum mutation rate that m can reach. 

From Eq. 15, m reaches to its minimum "zero" at the maximum value of Ps, and vice versa. Thus, 

m is inversely proportional to Ps.  

 

The objective of using mutation rate is to set the low and high ISI solutions likely to mutate, 

which gives them an ability to enhance their results more than what they already have, where the 

solutions at the equilibrium point are not mutated [1]. 
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The mutation process can be described as: 

 

For C 	 1 to k   (where k is the number of islands, see Eq. 14) 

Calculate probability Ps based on ��and �� (by numerical or direct method)  

Calculate mutation rate m (using Eq. 15) 

Select ISIi with probability proportional to Ps 

If ISIiis selected 

 Replace SIV of ISIi with a randomly generated SIV 

end if 

end for 

 

 

3.3. BBO Algorithm 

 
The steps of the general BBO algorithm can be listed as: 

 
1. Initialize the BBO parameters (Smax, I, E, mmax, etc). 

2. Find species count probabilities Ps and mutation rate m based on the calculated 

immigration rate �� and emigration rate �� by Eqs. 5 and 6. 

3. Generate k random islands, where each island represents one solution to a given problem 

with n-SIV.  

4. Sort the solutions k-ISI for all islands, so the first best solution should be mapped with the 

highest number of species and the highest emigration rate �� (or the lowest immigration 

rate ��), and continue the descending order till reaching to the worst solution. 

5. Do elitism process for saving the required best solutions for the next generation; it is an 

optional step [30].     

6. Probabilistically select the source islands based on ��, and the islands which need to be 

modified "the recipient islands" based on ��, and do the migration process. Then, update all 

k-ISI before ending this step.  

7. Do mutation process for the islands based on their probabilities that are listed in the 

probability vector after calculated in step (2). Then, update all k-ISI once the mutation 

process is completed. 

8. Return to step (4) for the next iteration. This loop can be terminated either if reaching to an 

acceptable tolerance or after completing the desired number of generations. 

 

4. PERFORMANCE COMPARISON 

 
The main problem associated with all the modified BBOs is that the modifications were done on 

an arbitrary selected form of the four original forms. There is no clarification on which form the 

proposed modification stands on and why. 

 

The four original forms of BBO have been tested through 23 benchmark functions with different 

dimensions and complexities.  

These functions can be classified into three groups: unimodal, multimodal with few local minima 

and multimodal with many local minima. Functions f01-f13 are high-dimensional problems. 
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Functions f01-05 and f07 are high-dimensional and unimodal, f06 is a high-dimensional step 

function with one discontinuous minimum. Functions f08-13 are high-dimensional and 

multimodal with many local minima, and the remaining functions are low-dimensional and 

multimodal with few local minima [33]. The details of these benchmark functions can be found in 

the Appendix. 

 

The parameters that have been used here are similar to those used in [25,29]: population size of 

50, I=E=1, mmax=0.01, generation limit of 20,000 for f01-13 and 1000 for f14-23, elitism 

parameter of 1, and Monte-Carlo simulation with 30 trails. 

 

Table 1 summarizes the performance of PMB, SMB, SPMB and SSMB models for 23 benchmark 

functions. The highlighted cells in the tables represents the best result among the four BBO 

algorithms. It can be clearly seen that the performance of PMB and SPMB are superior as 

compared to SMB and SSMB. For high-dimensional problems, PMB wins with 7 best solutions, 

10 mean and 8 standard deviation out of 13; while SPMB wins with 6 best solutions, 3 mean and 

5 standard deviation. On the other hand, for low-dimensional problems, SSMB enters this 

competition, and gives better Best, Mean and Standard deviation than that of the PMB for the 

functions f16, f17,f18, but it does not win as compared to SPMB. Single and simplified single 

migration based models are not valid for f21-23, because these problems are 1-dimensional 

problems, and the migration process is done within only one independent variable. 

 

Although, in overall, SSMB has respectively the first and second worst performance for high and 

low-dimensional problems, it achieved the fastest algorithm as shown in Table 2. This is logical, 

because of two reasons. First, it does a migration on one randomly selected SIV for each island 

rather than all n-SIV as in PMB and SPMB. Second, it will always select the best found solution 

as a source island for migration instead of doing a loop checking as in SMB. This is why the 

simplified versions of PMB and SMB trip in local minima particularly as the complexity, side 

constraints and/or dimensions increases and as the number of islands or population size decreases. 

In this situation, PMB has the best exploration and exploitation. 

 
Table 1: Comparison of the results for 30 trails of the original four BBO models, where Best, Mean, and 

StdDev stands for the smallest error, the mean of all errors, and the standard deviation, respectively.  

 

 

Best Mean StdDev Best Mean StdDev Best Mean StdDev Best Mean StdDev

f01 30 1.8518E+00 3.8843E+00 1.3964E+00 1.6999E+02 3.1652E+02 9.9742E+01 2.2588E+00 4.3027E+00 1.3073E+00 8.1588E+01 3.5592E+02 1.5209E+02

f02 30 4.0024E-01 7.0184E-01 1.3458E-01 3.8978E+00 6.1515E+00 1.3348E+00 5.1678E-01 7.6268E-01 1.0545E-01 5.4535E+00 7.3952E+00 1.1782E+00

f03 30 4.2433E+02 1.9527E+04 1.1268E+04 3.3679E+03 3.0638E+04 1.3227E+04 1.9048E+03 3.2307E+04 8.3231E+03 4.4645E+02 2.7268E+04 1.4724E+04

f04 30 3.2007E+00 6.2387E+00 1.1469E+00 2.3978E+01 3.4745E+01 6.0946E+00 2.8725E+00 5.6856E+00 1.2431E+00 2.8262E+01 3.8791E+01 4.1634E+00

f05 30 1.0517E+02 2.6058E+02 7.9555E+01 5.0807E+03 2.3564E+04 1.6310E+04 1.3597E+02 2.7246E+02 1.1116E+02 7.4418E+03 3.9130E+04 3.2640E+04

f06 30 2.0000E+00 4.7333E+00 1.8245E+00 1.7400E+02 3.9163E+02 2.0465E+02 1.0000E+00 4.7667E+00 2.4315E+00 1.3900E+02 4.5263E+02 2.8296E+02

f07 30 2.8562E-07 1.2406E-06 1.2872E-06 7.6867E-04 1.2135E-02 1.4628E-02 1.9837E-07 1.3833E-06 1.1343E-06 1.0547E-03 1.3451E-02 1.4276E-02

f08 30 4.4291E-06 1.3876E-05 5.7466E-06 3.5004E-04 1.6463E-03 1.2669E-03 5.0828E-06 1.3322E-05 7.4610E-06 5.9656E-04 1.8382E-03 1.0377E-03

f09 30 9.4594E-01 1.9351E+00 6.4580E-01 2.3807E+01 3.3102E+01 5.6152E+00 1.0236E+00 1.9211E+00 5.7860E-01 2.6082E+01 3.4796E+01 6.4496E+00

f10 30 6.3026E-01 9.9236E-01 2.3065E-01 4.3719E+00 5.7651E+00 6.6010E-01 4.9817E-01 1.0345E+00 2.5990E-01 4.6872E+00 5.9257E+00 6.9267E-01

f11 30 8.6708E-01 1.0263E+00 3.4402E-02 2.1095E+00 4.4318E+00 1.3255E+00 9.4245E-01 1.0357E+00 2.7730E-02 2.1708E+00 5.0205E+00 1.9755E+00

f12 30 5.0934E-03 2.9591E-02 3.2559E-02 1.0493E+00 3.5616E+00 3.8957E+00 3.8794E-03 3.1228E-02 3.5340E-02 1.4325E+00 6.3746E+01 3.2648E+02

f13 30 9.3001E-02 1.6875E-01 6.0757E-02 5.3779E+00 3.1883E+03 1.3051E+04 8.1548E-02 2.0015E-01 8.0590E-02 6.9544E+00 2.3081E+03 8.1029E+03

f14 2 2.1720E-11 8.0558E-08 2.1865E-07 6.4942E-10 1.4595E-04 5.4076E-04 6.1392E-12 3.8090E-10 3.2748E-10 8.4939E-11 1.0718E-07 5.3020E-07

f15 4 3.9927E-04 8.0573E-04 3.2529E-04 5.6999E-04 1.3729E-03 4.5011E-04 1.8923E-04 7.0160E-04 3.1929E-04 4.5865E-04 1.3658E-03 5.8181E-04

f16 2 2.3455E-07 9.1217E-05 1.2481E-04 1.6640E-05 4.1018E-04 4.3907E-04 3.5869E-10 4.8485E-06 4.7243E-06 5.7770E-08 2.7089E-05 3.9141E-05

f17 2 5.6480E-07 9.6466E-05 1.6743E-04 3.6639E-06 3.4432E-04 3.9477E-04 1.2486E-07 1.9438E-05 2.7087E-05 4.4129E-07 7.3364E-05 9.1485E-05

f18 2 2.7778E-05 1.5749E-03 1.6278E-03 6.0816E-05 5.8628E-03 6.6169E-03 1.2784E-07 8.1736E-05 8.7004E-05 9.2851E-06 2.9315E-04 3.7882E-04

f19 3 7.6177E-06 5.0374E-04 3.8211E-04 2.5507E-04 1.6343E-03 1.2888E-03 5.9005E-07 5.0688E-05 5.9545E-05 1.6327E-06 5.2029E-04 4.9816E-04

f20 6 1.8781E-03 6.9158E-02 6.0706E-02 3.6659E-02 1.6534E-01 7.1746E-02 3.3727E-03 7.9192E-02 5.6884E-02 2.1696E-02 1.5974E-01 6.5199E-02

f21 1 9.8030E-08 2.8723E-05 4.2939E-05 3.8113E-09 3.3121E-05 6.0656E-05

f22 1 8.1958E-10 2.1546E-05 5.2185E-05 2.2393E-08 3.4060E-05 4.6055E-05

f23 1 1.7454E-08 7.4624E-05 1.8726E-04 1.0113E-07 3.7714E-05 5.3672E-05

For 1-dimensional problems, SMB-BBO 

is not applicable;

(SMB=PMB)

For 1-dimensional problems, SSMB-BBO 

is not applicable;

(SSMB=SPMB)

f # n

Biogeography Based Optimization (BBO)
Partial Migration Based Single Migration Based Simplified Partial Migration Based Simplified Single Migration Based
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Table 2.Normalized CPU time for the high-dimensional problems f01-f13 

 

 

To verify this conclusion, three performance tests have been conducted as shown in Tables 3, 4 

and 5. Each one of these three tests is focused on one criteria. 

 

Test I is shown in Table 3, and it is used to study the performance of PMB and SPMB algorithms 

as the problem’s dimension decreases. The parameters used for this test are similar to that used in 

Table 1, except that the generation limit are set as: 1000 for n=2,4,6 ; 5000 for n=10 ; 10,000 for 

n=20 and 20,000 for n=30. 

 
 

Table 3. Performance Test I – f05 with different dimensions 

 

 
 

Whereas, Test II shown in Table 4 is used to study the performance of PMB and SPMB 

algorithms as the number of islands or population size increases for two of low-dimensional 

problems. 

 

Finally, Test III shown in Table 5 is used to study the performance of PMB and SPMB algorithms 

under different upper and lower values of the variable bounds (also known as domain, search 

space, side constraints, etc). 

 

As can be seen from Table 3, the SPMB perform better as the problem dimension decreases. But 

when the population size is not large, the PMB will performer better even for the low-

PMB-BBO SMB-BBO SPMB-BBO SSMB-BBO

f01 1.4804E+00 1.0084E+00 1.3181E+00 1.0000E+00

f02 1.4687E+00 1.0086E+00 1.3103E+00 1.0000E+00

f03 1.1672E+00 1.0082E+00 1.1104E+00 1.0000E+00

f04 1.5018E+00 1.0086E+00 1.3355E+00 1.0000E+00

f05 1.4717E+00 1.0074E+00 1.3133E+00 1.0000E+00

f06 1.4721E+00 1.0079E+00 1.3113E+00 1.0000E+00

f07 1.4089E+00 1.0070E+00 1.2769E+00 1.0000E+00

f08 1.4521E+00 1.0074E+00 1.2969E+00 1.0000E+00

f09 1.4621E+00 1.0068E+00 1.3041E+00 1.0000E+00

f10 1.4299E+00 1.0052E+00 1.2815E+00 1.0000E+00

f11 1.4256E+00 1.0070E+00 1.2876E+00 1.0000E+00

f12 1.3703E+00 1.0056E+00 1.2437E+00 1.0000E+00

f13 1.3878E+00 1.0021E+00 1.2505E+00 1.0000E+00

Avg CPU Time 1.4230E+00 1.0070E+00 1.2800E+00 1.0000E+00

f #
BBO Models

Best Mean StdDev Best Mean StdDev

f05a 2 5.0569E-06 3.0404E-04 2.9421E-04 1.1454E-06 4.3368E-04 7.0482E-04

f05b 4 2.6016E+00 1.3546E+02 1.0058E+02 3.8176E-01 3.0585E+01 3.2854E+01

f05c 6 4.5589E+01 8.1933E+02 7.3780E+02 4.0158E+01 8.3004E+02 7.5869E+02

f05d 10 2.8495E+01 2.1690E+02 1.8675E+02 7.1550E+01 2.4654E+02 1.7535E+02

f05e 20 8.7400E+01 3.3766E+02 2.4278E+02 1.3913E+02 3.5894E+02 4.0126E+02

f05f 30 1.0517E+02 2.6058E+02 7.9555E+01 1.3597E+02 2.7246E+02 1.1116E+02

Generalized 

Rosenbrock's 

Function

f # Name Dimensions

Biogeography Based Optimization (BBO)
Partial Migration Based Simplified Partial Migration Based
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dimensional problems, as shown in Table 4. From Table 5, if the problem search space is large, 

the PMB wins too. 

 
Table 4. Performance Test II 

 

Table 5. Performance Test III 

 

Fig. 3 shows the curves of fitness 

problem 1.2 “f03”, Generalized Rosenbrock’s function
 

(a) 

(c) 

Figure 3. Curves of fitness functions 

f15a 5

f15b 10

f15c 50

f15d 200

f16a 5

f16b 10

f16c 50

f16d 200

Kowalik's 

Function

Six-Hump Camel-

Back Function

f # Name
Population 

Size

f11a Xi Є [- 60,60

f11b Xi Є [- 600,600]

f11c Xi Є [- 6000,6000]

Generalized 

Griewank's 

Function

f # Name
Side 

Constraints
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dimensional problems, as shown in Table 4. From Table 5, if the problem search space is large, 

Performance Test II – f15 and f16 with different populations 

 

Performance Test III – f11 with different side constraints 

of fitness functions of PMB, SMB, SPMB, and SSMB for the

Generalized Rosenbrock’s function “f05”, Generalized Rastrigin’s function 

(b) 

 
(d) 

functions of PMB, SMB, SPMB, and SSMB for some selected functions

(b) f05, (c) f09, (d) f11 

Best Mean StdDev Best Mean

3.0566E-04 1.1017E-03 5.6436E-04 4.2186E-04 1.4561E-03

5.1379E-04 1.2970E-03 7.7744E-04 2.1192E-04 1.0605E-03

3.9927E-04 8.0573E-04 3.2529E-04 1.8923E-04 7.0160E-04

1.9935E-04 6.2320E-04 2.2726E-04 1.4958E-04 4.4200E-04

1.0557E-05 6.5798E-04 7.0515E-04 1.1389E-05 8.7138E-04

1.1365E-07 2.9963E-04 4.1067E-04 2.4790E-06 1.8534E-04

2.3455E-07 9.1217E-05 1.2481E-04 5.7770E-08 2.7089E-05

1.7238E-07 2.2757E-05 2.7229E-05 5.7634E-09 5.9924E-07

Population 

Size

Biogeography Based Optimization (BBO)
Partial Migration Based Simplified Partial Migration Based

Best Mean StdDev Best Mean

60,60] 8.6106E-02 2.3591E-01 8.7067E-02 5.3899E-02 2.1482E-01

Xi Є [- 600,600] 8.7314E-01 1.2508E+00 2.3871E-01 9.6562E-01 1.3044E+00

Xi Є [- 6000,6000] 4.9293E+00 3.2079E+01 2.4023E+01 6.0255E+00 3.7802E+01

Side 

Constraints

Biogeography Based Optimization (BBO)
Partial Migration Based Simplified Partial Migration Based
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dimensional problems, as shown in Table 4. From Table 5, if the problem search space is large, 

 

 

for theSchwefel’s 

, Generalized Rastrigin’s function  

 

 

of PMB, SMB, SPMB, and SSMB for some selected functions.(a) f03, 

Mean StdDev

1.4561E-03 7.5693E-04

1.0605E-03 7.2553E-04

7.0160E-04 3.1929E-04

4.4200E-04 1.7749E-04

8.7138E-04 8.0479E-04

1.8534E-04 2.8880E-04

2.7089E-05 3.9141E-05

5.9924E-07 7.5759E-07

Biogeography Based Optimization (BBO)
Simplified Partial Migration Based

Mean StdDev

2.1482E-01 7.9380E-02

1.3044E+00 2.2903E-01

3.7802E+01 2.7235E+01

Biogeography Based Optimization (BBO)
Simplified Partial Migration Based
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“f09” and Generalized Griewank’s function “f11”. For functions f05, f09 and f11, it can be 

clearly seen that the PMB and SPMB algorithms outperform the SMB and SSMB algorithms, and 

the gap between the convergences is large. For the function f03, SSMB enters this competition 

and shows better fitness as compared to SPMB. However, the PMB algorithm is again has the 

best convergence. 

 

5. CONCLUSIONS AND SUGGESTIONS 

 
The performance of the four original forms of BBO algorithms (PMB, SMB, SPMB and SSMB) 

have been extensively tested and compared using 23 benchmark functions of different dimensions 

and complexities, as well as different scenarios have been done for some selected functions. The 

results show that the PMB, which is the first presented model in 2008, gives the best performance 

as the complexity, side constraints and/or dimensions of a given problem increases and as the 

number of islands or population size decreases. However, the PMB is found to be the slowest 

algorithm which requires around 42.30% more CPU time than that of the SSMB as shown in 

Table 2. To compromise between the cost and convergence speed under the above scenarios, 

SPMB is found to be the best choice as it requires around 28.00% more CPU time, but its 

exploration and exploitation will decrease significantly. The performance of the SMB algorithm 

found to be the worst as compared to the others. 

 

The results obtained in this paper can be used as a foundation and a first step for enhancing any 

prospective modification on the BBO algorithm including the existing modifications that are 

described in literature. 

 

APPENDIX 

 
This appendix includes a complete list that have been used in this paper. The details of these 

benchmark functions can be found in [32]. The global minimums of the functions (f08, 

f14, f15, f16, f17, f19, f20, and f21-f23) are rounded in [32]. In this paper, the correct 

values are taken instead from [34,35,36,37,38], respectively. 
 

f01: Sphere Model 

3�I� 	JI2:D
2K�  

• �100 ≤ I2 ≤ 100,      C = 1,2, … , L 

• 3�2D�M∗� = 0,     I2∗ = 0 

 
f02: Schwefel’s Problem 2.22 

3�I� = J|I2|D
2K� + P|I2|D

2K�  

• −10 ≤ I2 ≤ 10,      C = 1,2, … , L 

• 3�2D�M∗� = 0,     I2∗ = 0 
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f03: Schwefel’s Problem 1.2 

3�I� = J QJ IG
2

GK� R:D
2K�  

• −100 ≤ I2 ≤ 100,      C = 1,2, … , L 

• 3�2D�M∗� = 0,     I2∗ = 0 

 
f04: Schwefel’s Problem 2.21 3�I� = H I2S|I2| , 1 ≤ C ≤ LT 

• −100 ≤ I2 ≤ 100,      C = 1,2, … , L 

• 3�2D�M∗� = 0,     I2∗ = 0 

 
f05: Generalized Rosenbrock’s Function 

3�I� = J U100VI2�� − I2:W: + �I2 − 1�:XD��
2K�  

• −30 ≤ I2 ≤ 30,      C = 1,2, … , L 

• 3�2D�M∗� = 0,     I2∗ = 1 

 
f06: Step Function 

3�I� = J�ZI2 + 0.5]�:D
2K�  

• −100 ≤ I2 ≤ 100,      C = 1,2, … , L 

• 3�2D�M∗� = 0,     I2∗ = 0 

 
f07: Quartic Function 

3�I� = J CI2̂
D

2K�  

• −1.28 ≤ I2 ≤ 1.28,      C = 1,2, … , L 

• 3�2D�M∗� = 0,     I2∗ = 0 

 
f08: Generalized Schwefel’s Problem 2.26 

3�I� = − J UI2`CL #a|I2|'XD
2K�  

• −500 ≤ I2 ≤ 500,      C = 1,2, … , L, 
• 3�2D�M∗� = −418.982887272433799807913601398L,     I2∗ = 420.968748 

 
f09: Generalized Rastrigin’s Function 

3�I� = JfI2: − 10gh`�2iI2� + 10jD
2K�  
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• −5.12 ≤ I2 ≤ 5.12,      C = 1,2, … , L 

• 3�2D�M∗� = 0,     I2∗ = 0 

 

f10: Ackley’s Function 

3�I� = −20k!�/.:lmn ∑ �pqnprm " − k#mn ∑ stu �:v�p�nprm ' + 20 + k��� 
• −32 ≤ I2 ≤ 32,      C = 1,2, … , L 

• 3�2D�M∗� = 0,     I2∗ = 0 

 
f11: Generalized Griewank’s Function 

3�I� = 14000 J I2:
D

2K� − P gh` �I2√C�D
2K� + 1 

• −600 ≤ I2 ≤ 600,      C = 1,2, … , L 

• 3�2D�M∗� = 0,     I2∗ = 0 

 
f12: Generalized Penalized No.1 Function 
 

3�I� = iL x10`CL:�iy�� + J�y2 − 1�:91 + 10`CL:�iy2���@D��
2K� + �yD − 1�:z + J {�I2 ,  , F, H�D

2K�  

where 

y2 = 1 + �̂ �I2 + 1�,     {�I2,  , F, H� = 0 F�I2 −  ��I2 >  0                         −  ≤ I2 ≤  F�−I2 −  ��I2 < − 8 
•  = 10,     F = 100     &     H = 4 

• −50 ≤ I2 ≤ 50,      C = 1,2, … , L 

• 3�2D�M∗� = 0,     I2∗ = 1 

 
f13: Generalized Penalized No.2 Function 

3�I� = 0.1 x`CL:�3iI�� + J�I2 − 1�:91 + `CL:�3iI2���@D��
2K� + �ID − 1�:91 + `CL:�2iID�@z

+ J {�I2,  , F, H�D
2K�  

where 

{�I2 ,  , F, H� = 0 F�I2 −  ��I2 >  0                         −  ≤ I2 ≤  F�−I2 −  ��I2 < − 8 
•  = 5,     F = 100     &     H = 4 

• −50 ≤ I2 ≤ 50,      C = 1,2, … , L 

• 3�2D�M∗� = 0,     I2∗ = 1 
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f14: Shekel's Foxholes Function 

3�I� = � 1500 + J 1� + ∑ VI2 −  2,GW�:2K�
:�

GK� ���
 

where 

 2,G = U −32 −16     0     16 32  −32 …   0 16 32−32 −32 −32 −32 −32 −16 … 32 32 32X 

• −65.536 ≤ I2 ≤ 65.536,      C = 1,2 

• 3�2D�M∗� ≈ 0.998003837794449325873406851315,     I2∗ ≈ −31.97833 

 
f15: Kowalik’s Function 

3�I� = J � G − I�V�G: + �GI:W�G: + �GI� + I^�:��
GK�  

• −5 ≤ I2 ≤ 5,      C = 1,2,3,4 

• 3�2D�M∗� ≈ 0.0003074859878056042168404344971009,  
• I2∗ ≈ �0.1928334527443353013149425851230.1908362422032358009153036664430.1231172960292474107386893729200.135765991801668826273045769995� 

 

 

Table 6. Data for Kowalik’s Function 

 �  G �G�� 

1 0.1957 0.25 

2 0.1947 0.5 

3 0.1735 1 

4 0.1600 2 

5 0.0844 4 

6 0.0627 6 

7 0.0456 8 

8 0.0342 10 

9 0.0323 12 

10 0.0235 14 

11 0.0246 16 

 
f16: Six-Hump Camel-Back Function 
 3�I� = 4I�: − 2.1I�̂ + 13 I�� + I�I: − 4I:: + 4I:̂  

• −5 ≤ I2 ≤ 5,      C = 1,2 

• 3�2D�M∗� = −1.031628453489877 "�� ℎ ` 3h{� ��h� � HCLCH{H",  
• I2∗ =  �±0.08984201368301331, ±0.7126564032704135� 

 
f17: Branin RCOS Function 

 3�I� = �I: − 5.14i:� I�: + �5i I� − 6�:  + 10 �1 − 18i� cos�I�� + 10 
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• −5 ≤ I� ≤ 10,      0 ≤ I: ≤ 15 

• 3�2D�M∗� = 0.39788735772973816 "�� ℎ ` �ℎ�kk ��h� � HCLCH{H",  
• I2∗ = �−i, 12.275�, �i, 2.275�, �9.42478,2.475� 

 
f18: Goldstein-Price Function 
 3�I� = 3��I�3:�I� 

where 3��I� = 1 + �I� + I: + 1�:�19 − 14I� + 3I�: − 14I: + 6I�I: + 3I::�        3:�I� = 30 + �2I� − 3I:�:�18 − 32I� + 12I�: + 48I: − 36I�I: + 27I::� 

• −2 ≤ I2 ≤ 2,      C = 1,2 

• 3�2D�M∗� = 3,     I2∗ = �0, −1� 

 
f19,20: Hartman’s Family 
 

3�I� = − J g2 kI� �− J  2,GVIG − �2,GW:D
GK� ��

2K�  

• H = 4  ,    L = 3, 6 3h� 319  L� 320, �k`�kg�C1k�y 

• 0 ≤ IG ≤ 1,      � = 1,2, . . . , L 

• 319: 3�2D�M∗� = −3.86278214782076,     I2∗ = x 0.1,0.55592003,0.85218259z 

• 320: 3�2D�M∗� = −3.32236801141551,     I2∗ =
���
��0.20168952,0.15001069,0.47687398,0.27533243,0.31165162,0.65730054���

��
 

 

 

Table 7: Data for Hartman’s Function 1 

 C  2,G ,   �= 1,2,3 

g2  �2,G ,   � = 1,2,3 

1 3 10 30 1 0.3689 0.1170 0.2673 

2 0.1 10 35 1.2 0.4699 0.4387 0.7470 

3 3 10 30 3 0.1091 0.8732 0.5547 

4 0.1 10 35 3.2 0.038150 0.5743 0.8828 
 

 

Table 8: Data for Hartman’s Function 2 

 C g2  2,G ,   � = 1,2, … ,6 �2,G ,   � = 1,2, … ,6 

1 1 10 3 17 1.7 8 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 

2 1.2 0.05 10 17 8 14 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 

3 3 3 3.5 1.7 17 8 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650 

4 3.2 17 8 0.05 0.1 14 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 

 

 

 

 



Computer Science & Information Technology (CS & IT)                                 138 

 

f21,22,23: Shekel's Family 
 

3�I� = − J9�I −  2��I −  2�A + g2@D
2K�  

• n= 5, 7 and 10 for f21, f22 and f23, respectively 

• 0 ≤ I ≤ 10,      C = 1,2, … , L 

• f21:3�2D�I∗� = −10.153198755084881776356839400251,  I∗ = 4.000085212027619539925233402760                           
• f22:3�2D�I∗� = −10.402822044707775329070518200751, I∗ = 4.000089532152739968028886505640                                
• f23:3�2D�I∗� = −10.536290299294717105427357601002, I∗ = 4.0001281610100453290705182007510                             

 

Table 9: Data for Shekel Functions f21,f22,f23 

 C  2G , � = 1,2,3,4 g2  
1 4 4 4 4 0.1 

2 1 1 1 1 0.2 

3 8 8 8 8 0.2 

4 6 6 6 6 0.4 

5 3 7 3 7 0.4 

6 2 9 2 9 0.6 

7 5 5 3 3 0.3 

8 8 1 8 1 0.7 

9 6 2 6 2 0.5 

10 7 3.6 7 3.6 0.5 
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