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ABSTRACT 

  

Threshold ramp secret sharing schemes are designed so that (i) certain subsets of shares have 

no information about the secret, (ii) some subsets have partial information about the secret and 

(iii) some subsets have complete information to recover the secret. However most of the ramp 

schemes in present literature do not control the leakage of information in partial access sets, 

due to which the information acquired by these sets is devoid of structure and not useful for 

fine-grained access control. Through a non-perfect secret sharing scheme called MIX-SPLIT, 

an encoding methodology for controlling the leakage in partial access sets is proposed and this 

is used for fine-grained access to binary strings. The ramp code generated using MIX-SPLIT 

requires a much smaller share size of O(n), as compared to Shamir's ramp adaptation which 

incurs a share size of atleast O(n
2
) for the same multi-access structure. The proposed ramp code 

is finally applied towards the protection and fine-grained access of industrial design drawings. 
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1. INTRODUCTION 

 
Most initial design blueprints of products such as bikes, cars etc., are a byproduct of collaborative 

effort between several designers often at dispersed locations. Information flow across teams of 

designers is critical and must be encouraged since changes in one design facet may require subtle 

changes in another facet but on a need to know basis only to avoid information leakage or theft. 

A few traitors can always share fragments of the early design blueprints with an external party. 

Hence, the notion of maintaining absolute transparency in the design and development phase, is a 

big risk to the company. 

 

This problem can be actively mitigated by providing selective access to groups of designers. 

Different groups of designers should therefore have restricted access to different portions of the 

overall design. When the number of users falls below a critical mass/number (e.g. a threshold 

factor K), then no access should be given to any portion of the blueprint. This is necessary to 

prevent leakages within small groups. However when multiple groups are involved, a larger 

fraction of the design can be revealed. Hence any practical selective access scheme must drift  
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from no access to partial but selective access and under special circumstances to complete 

access, depending on the access rights, group size and designation of the designers. Hence, the 

size and composition of a coalition of designers will influence exactly which portion of the 

protected complete design is available for viewing and modification. 

 

These designs can be protected by encryption, but a complete encryption of the entire mass of 

data renders it inaccessible when only selective information needs to be examined for further 

analysis. To permit selective access the design data is granularized by partitioning and each 

disjoint fragment must be encrypted with a different key. This set of keys is then pooled and split 

into several shares based on pre-decided access policies, which are then distributed amongst the 

designers. The access framework must ensure that only the right combination of shares produce a 

set of viable decryption keys which can be used to decrypt different portions of the design 

simultaneously. 

 

Most conventional secret sharing schemes such as Shamir's polynomial construction [1] and 

Blakeley's Geometric approach [2] were designed to protect single secrets based on a threshold 

number of users and can be termed as (K,n) threshold schemes. In these schemes a single secret, 

��, is split into n shares {��̅, ��̅, … , �
̅} and atleast K shares are required for perfect reconstruction. 

However, K-1 or fewer shares do not have adequate information to reconstruct the secret either in 

the information theoretic sense (e.g. Shamir's scheme) or in the computational sense (e.g. 

Blakeley's scheme). Extensions of these schemes towards more general access structures [3] from 

plain threshold type structures are possible. Unfortunately single secret sharing schemes are not 

very useful for selective access applications since the system must handle multiple secrets such as 

several decryption keys. 

 

In the industrial design application, every decryption key is a link to a certain portion of the 

design which can be viewed by designated groups of designers and this aspect is captured by the 

access policy. There may be different access policies for different portions of the design. 

Applying single secret sharing schemes independently to different secrets based on the type of 

access policy may not be very efficient in terms of storage as the size of the shares given to 

different users may become very large. The multi-secret optimization problem was studied by 

Xiao et. al.[4] by realizing multi-access structures using monotone span programs. The authors 

showed that if the access structures were of a multi-threshold type, then the lowerbound on the 

share size is based on the sum of the sizes of the participating coalitions. Only then will the 

constructions remain information theoretically secure. 

 

However if information theoretic secrecy is sacrificed, information storage can be made more 

efficient. A non-perfect secret sharing scheme in contrast consists of three different types of sets 

of shares: (i) Access sets which constitute subsets of users who have full information about the 

secret, (ii) Partial access sets which include sets of users who possess partial information about 

the secret and (iii) Non-access sets in which users do not have any information about the secret. 

Examples are (d,k,n) ramp schemes of Blakley and Meadows [5]which are an extension of (K,n) 

threshold schemes. If we denote Size(��̅) as the size of the share ��̅ in bits and Size(��) as the secret 

size, for any perfect secret sharing scheme it holds that Size(��̅) ≥ ����(��)[6]. On the other hand 

there exist non-perfect schemes with Size(��̅) < ����(��)[5]. Thus one of the advantages of non-

perfectness is the smaller share size at the expense of information-theoretic secrecy. 

Unfortunately most ramp schemes do not control the information leakage occurring in the partial 

access sets and hence non-perfect schemes have largely remained a subject of purely academic 

interest. Variations in the form of Shamir's ramp scheme have been proposed for applications 

such as efficient information dispersal [7] and image splitting [8]. 
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If the information flow and leakage in non-perfect secret sharing schemes can be controlled, 

several interesting applications can be conceived [9]. The MIX-SPLIT cipher which first 

originated as a non-perfect multi-secret sharing scheme [10] was found to have a variety of 

applications when its information leakage characteristics were regulated [9][11]. In this paper we 

explore the application of this non-perfect scheme towards fine-grained access control through a 

ramp construction. 

 

The MIX-SPLIT algorithm specific to access control is given in Section 2. The rules for partition 

visibility for multi-secret access are given in Section 3, while the actual code construction is 

given in Section 4. The proposed ramp code is examined for its granularity and efficiency (in 

terms of share size) in Section 5. Finally in Section 6, an industrial design protection application 

is provided. 

 

2. MIX-SPLIT APPLIED TO FINE-GRAINED ACCESS CONTROL 

 
Consider a sequence of  independent and identically distributed (I. I. D.) binary random variables, 

�� = ���,   ��, … , �� � based on a series of unbiased coin-flip experiments. It is impossible to 

decompose this block into smaller sequences based on statistical disparities. In an access control 

application this interesting sequence represents a block of encryption (or decryption) key-strings 

which are mixed to form ��. If these key strings are created from independent and unbiased coin-

flip experiments, then their mixture is guaranteed to take the form of the statistically 

homogeneous block ��. The overall access control process comprises of the following steps: 

 

Step 1: Partitioning and forming the homogenous block 

 
Let ����,   ���, … , ����  be v different Lp-bit key strings. These strings are first concatenated and then 

shuffled to form a homogeneous block �� of length L = Lp × v bits. The shuffling disperses the 

key-strings over the entire block ��. Let P = {1,2,3,...,L} be the set of all possible bit-positions 

within the block ��. When the key-strings disperse, they occupy a distinct group of positions 

within the homogeneous block. This group forms what we define as a hidden Partition. There 

will be exactly v disjoint and equal length partitions P1, P2,.., Pv such that P = P1 ∪ P2 ∪…∪ Pv. 

Thus after mixing we are left with the one-to-one map, 

 

…………(1) 

 

for j = 1,2,3,...,v, where ��(Pj) represents the information corresponding to the bit positions 

specified in partition Pj. This type of mixing is called micro-mixing, where the shuffling is 

performed at the bit-level. The hidden secrets are all the v, ��-fragments ��(Pj), j=1,2,..,v, where, 

��(Pj) = ����,   ���, … , ����  , with jk ∈ {1,2, .. ,L} and the length of each subsequence is Lp = L/v. 

From this sequence �� one can derive another sequence !� as: 

 

…………(2) 

 

where, the function BIT_CMP[.] is the bit-complement of any binary string vector. For example 

if �� = �1,1,0,1,0,1�, then !� = �0,0,1,0,1,0�. Observe that !� inherits the statistical characteristics 

of ��, i.e. yi ⊥ yj (columnwise independence). However, given ��, !� is completely deterministic. 

The need for a complementary sequence !� is for allowing conditional visibility of portions of �� 

when a coalition of shares are brought together (which otherwise cannot be separated). 

 

 

 



70                                       Computer Science & Information Technology (CS & IT) 

Step 2: Mixing �� and !� and splitting into n shares 

 
Once the two complementary but homogeneous blocks �� and !� are created, a macro-mixing of 

the fragments of (��, !�) which contain the encryption key-strings, 

i.e. ��(Pj) and !�(d Pj), j = 1,2,3...,v is done in a controlled fashion to produce the shares. Each of 

the n shares can be written as, 

 

…………(3) 

 

where, the sequence ��̅� is chosen according to a pre-designed codebook. The share inheritance is 

represented by the relation, 

 

…………(4) 

 

 

The binary value $�� ∈ {0,1} is a part of the codebook, 

 

 

…………(5) 

 

 

where, n represents the number of users and v the number of partitions. 

 

Step3: Retrieval of fragments of �� 

 
In the problem of fine grained access we are not just interested in the entire block of data ��, but 

instead in extracting some of its fragments for which we require selective partition visibility 

depending on which combination of shares are stacked. This is precisely the reason why there is a 

need for choosing !� as a complementary sequence. When we chop (��, !�) and stitch the shares 

using a codebook which controls the spatial redundancy and piecewise distribution across 

multiple shares, we can ensure that a particular piece ��(Pj) can be made visible provided the 

corresponding spatial inter-relationship across the stack remains unique to that segment alone. 

The conditional visibility (or invisibility) of the partitions depend on some basic rules discussed 

in the next section. 

 

3. RULES FOR PARTITION RELEASE IN MIX-SPLIT 

 
Each share has a unique signature defined by a unique v-bit codeword. A coalition of t shares, &', 

is defined by a ( × * binary signature matrix A which is obtained by row sampling of the 

codebook C. Hence from the point of view of a MIX-SPLIT specific construction, it is more 

appropriate to refer to a particular coalition in terms of its group signature A (as &'(+)). 

 

We may represent each block matrix A in terms of its individual columns, + = �,��, ,��, … , ,��], 

where ,��    is a ( × 1 binary column vector. Now we define a set -.�&'(+)� as the set of visible 

partitions in the coalition of shares &' defined by the group signature A. We now formulate five 

rules which determine the visibility of the partitions. 

 

Rule 1: Complementary and repetitive columns lead to inseparable partitions 
 

-.�&'(+)� = / IF for every ,�� ∈ +,  BIT_CMP[,��� ∈ + even though ,�� may be distinct. 

Example: 
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…………(6) 

 

Given above is a codebook for a stack of three shares 0��̅, ��̅ , �1̅2 from top to bottom. Note in this 

example every column has a corresponding column which is its bit complement. Consequently 

the stack equations remain non-unique. The bit positions which are leaked out based on 

columnwise stack element comparisons are, 

 

…………(7) 

 

…………(8) 

 

 

Where, 34 , 35 ∈ 6, with 6 = 6� ∪ 6�∪ 67∪ 68  with PA = P1 ∪ P2 and PB = P3 ∪ P4. The pairs [P1 

, P2 ] and [P3 , P4 ] remain mixed and cannot be separated. However, since each stack comparison 

operation tends to narrow down the search for the partitions Pi , i=1,2,3,4 this is a non-perfect 

scheme. For a sufficiently large set PA it is very difficult to split this into two constituent 

partitions P1 , P2 without prior information. Thus no partitions are visible (or can be separated) 

from complementary patterns. 

 

A gentle extension of this rule is possible by observing that repetitive columns also form an 

inseparable pair as the stack equations will remain the same. 

 

 

…………(9) 

 

 

Rule 2: Rowsampling of a complementary pattern is complementary 
 

IF -.�&'(+)� = /, THEN -.�&'9�(:)� = /  

 

where, B is a sub-block obtained by rowsampling of A (in this case by dropping any one of the 

rows in A). Consequently, by induction, dropping multiple rows will not reveal any of the 

partitions. 

 

Rowsampling matrix A given in the example for Rule 1, we get, 

 

…………(10) 

 

 

Since each column in B has a complementary counterpart, from Rule 1, it follows that 

-.�&';�(:)� = /. 

 

Rule 3: Single share is always mixed (no partitions visible) 

 
-.�&';�(+)� = / irrespective of the choice of A. 

 

As a special case we observe that since two statistically similar sequences are mixed, no 

information regarding the partitions is leaked out from a single share. 
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Rule 4: Atleast one co-ordinate becomes visible if a column is distinct 
 

-.�&'(+)� ≠ / IF atleast one of the columns ,�� is distinct (i.e. only one of its kind) AND its 

complementary counterpart BIT_CMP[,��� is not in A. 

 

Example: 

 

…………(11) 

 

 

The first column is unique. Partition revealed is P1 as -.�&';�(+=)� = {6�}. The other two 

partitions P2 and P3 are mixed and inseparable as their columns form a complementary pair. 

 

Rule 5: Adding to visible stack 
 

IF -.�&'(+)� ≠ / THEN -.�&'>�(?)� ≠ /   

 

where, D is obtained by stacking another share (or codeword) on top of matrix A. To generalize 

this, further note that by adding to the stack, one cannot convert a pair of columns which are non-

complementary into a complementary pair. This means that the number of visible partitions can 

only increase with the addition of new rows. Furthermore, 

 

…………(12) 

 
 

only if A can be derived from D directly through row-sampling. 

 

Example: 

 

To construct D a new row �
̅@A ≡ �1,0,0� is added to the stack of A2. 

 

…………(13) 

 

 

 

Three different stack comparisons between 0��̅ , ��̅ , �1̅2 will reveal all three partitions. The three 

disjoint sets of bit positions PA, PB, PC which are revealed as a result of the stack comparison are, 

 

…………(14) 

 

 

 

 
 

These sets of positions will directly correspond to the original partitions PA = P1, PB = P2 and PC 

= P3 respectively. As a result -.�&';7(?)� = {6�, 6�, 67}.  

 

4. RAMP CODE 
 

To construct the ramp code we first generate a binary column vector ,�C with Hamming weight r 

= n-1 and length n > 4 and append all possible permutations of this vector to the code. There will 

be a total of n permutations of the column vector including the original vector itself. The resultant 
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codebook is of size D × D and each share has a size of D ∙ F� bits. We first claim that this code is a 

3-out-of-n selective access code which has a ramp, multi-access characteristic. The structure of 

this code with the number of partitions v=n, threshold K=3 and number of users n, denoted as 

(v,K,n) selective access code (SAC), is shown below, 

 

 

 

 

…………(15) 

 

 

 

 

 

When any two share codes are stacked to form the row-sampled matrix Dt=2, say for example the 

first two shares ��̅, ��̅, 

 

…………(16) 

 

 

there will be three distinct column identities, �0,1�G, �1,0�G and �1,1�G. The first two form a 

complementary pair while the third type will be repeated n-2 times. Hence none of the partitions 

will be visible for t=2 or fewer shares (Rule 1). 

 

When any three shares are stacked, say ��̅, ��̅, �1̅, there will be three distinct columns which will 

result in three different stack equations. Exactly three distinct partitions Pi, Pj and Pk, where, i,j,k 

∈ {1,2,..,n} will be revealed through each of the stack equations. The remain n-3 partitions will 

remain invisible since they all share the same column stack equation, �1,1,1�G (Rule 1). 

 

In general, when t ≥ 3 shares are fused, t partitions will be revealed as there will be t distinct stack 

equations. As the positions of the zeroes is different for each share, the set of partitions revealed 

will also be different. For such a scheme the total number of variations in access control 

possibilities by choosing different combinations of shares, is very large. This code can be called 

as ramp code since each share added to a legitimate coalition increases the number of partitions 

by exactly one and keeps the combination of partitions released, unique to that coalition. Only 

when the size of the coalition becomes n-1 or larger, all the v partitions are released. 

 

4.1 Code Characteristics When n ≤≤≤≤ 4 

 
Note that the choice of n should be greater than 4, otherwise this scheme will not acquire a ramp 

characteristic with threshold K=3. When n=2, this code is transformed into a 2-out-of-2 

conditional unlocking code, 

 

…………(17) 

 

 

where, a different sequence [0,0] or [1,1] needs to be stacked above the 2 shares to unlock the 

mixed partitions. When n=3, this code is transformed into a 2-out-of-3 selective access code 

(shown below) which has been discussed in detail in the Geometric interpretation of MIX-SPLIT 

[11]. 

 

…………(18) 
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Here, the homogeneous block �� is split into three disjoint partitions and each partition can be 

mapped to a co-ordinate in 3-dimensional space restricted to a UNIT cube. The three partitions 

put together therefore give �� a certain position/location within this UNIT cube. The region of 

uncertainty for localizing �� is a plane when any two shares are fused and becomes a point when 

all shares are stacked. When n=4, the scheme becomes a 3-out-of-4 joint access but without a 

ramp or selective access characteristic. This happens because when any three shares are stacked, 

there are four distinct stack equations and so all four partitions are released simultaneously. 

 

 

…………(19) 

 

 

 

5. CHARACTERISTICS OF THE RAMP CODE 

 
5.1 Granularity 

 
In the ramp code, every legitimate coalition of shares &' , ( ≥ 3 exposes a selective combination 

of fragments from the homogeneous block �� = ���(6�) ||��(6�) || … ||��(6�)�. Let Nc be the total 

number of legitimate access combinations with, 
 

 

…………(20) 

 
 

and the coalitions of shares J�, J�, … , JKL  represent only the valid access combinations for 

which atleast one of the partitions are revealed. Let the corresponding sets of partitions released 

be -.(J�), -.(J�), … , -.(JKL) respectively. A particular set of partitions -.(J�) is said to be 

distinct if the combination of partitions is unique to that specific coalition. This holds true only if, 

 

…………(21) 

 

with j ∈ {1,2,3,..,Nc}. The operator '∆' indicates a symmetric set difference and |VP(Ai)| represents 

the size of the set (or the number of elements in the set) VP(Ai). If Ndist  indicates the total number 

of distinct sets of partitions, it is obvious that, 

 

…………(22) 
 

where, v is the total number of partitions. We may therefore define granularity as the fraction of 

legitimate access combinations which produce distinctive sets of partitions. This measure which 

quantifies the diversity of the multi-access space can be expressed as, 

 

…………(23) 

 
 

It may be observed that GRANv,K,n ∈ [0,1]. In the case of the ramp code (v=n, K=3, n) (Section 

4), when shares ��̅, ��̅, �1̅ are stacked, three unique partitions are released Pi, Pj and Pk. Every new 

share added to the coalition helps release a new partition. All partitions are released when the 

coalition size becomes t = n-1. Thus all t-coalitions (3 ≤ ( ≤ D − 2) release distinct sets of 

partitions.  

 

Thus, 
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…………(24) 

 

…………(25) 

Hence the granularity of this ramp code is, 

 

…………(26) 

 

…………(27) 

 

 

It may observed that GRANn,3,n → 1 as n becomes large. 

 

5.2 Share size and comparison with Shamir's ramp 

 
To compare efficiency of the MIX-SPLIT proposition, we examine another secret sharing 

scheme, which can be designed to provide the same degree of granularity. It is known, that 

Shamir's secret sharing scheme based on polynomial interpolation [1] originally designed as a 

(k,n) threshold scheme can be extended towards more general access structures [3]. The 

polynomial based construction lends itself to changes and expansions in the access structure and 

can be adapted to produce efficient share sizes for each participant. In contrast with the MIX-

SPLIT construction, Shamir's scheme is a perfect secret sharing scheme which provides 

information theoretic secrecy, while the former relies on computational security gained by the 

strength of the sequence mixing process. However, to address the problem of optimizing the share 

size of each user while sharing multiple secrets, Shamir's scheme is deployed as a ramp scheme 

[7],[8] for the same multi-access structure. 

 

5.3 Access structure of the linear access code 

 
The linear access code protects exactly v=n partitions of the block ��. To release a certain 

partition say Pi, the share of ��̅ must be included in the coalition of size t ≥ 3. Let Ri be the set of 

all coalitions of size t = 3 or larger involving share ��̅ with i = 1,2,3,...n. All the access sets in Ri 

will have access to fragment (or partition) Pi. The total access space (ASP) is, 

 

…………(28) 

 

Since there are several overlapping combinations where the same coalition may be allowed to 

access multiple secrets, e.g. the 3-coalition ��̅, ��̅ , �1̅ is allowed access to partitions Pi, Pj and Pk. 

The main challenge in Shamir's extension is to design a splitting mechanism that will allow the 

sub-secrets contained in the partitions Pi, i=1,2,…,n  to be shared efficiently amongst several 

users, while permitting fine grained access. 

 

5.4 Extension of Shamir's scheme 

 
To draw an equivalence in the analysis we observe that each partition Pi in the MIX-SPLIT 

construction is a Lp bit binary string which can be mapped to an integer Ki in the range 

�0,1, … , (2�� − 1)�. For certain values of Lp, 2�� − 1 becomes a prime number, i.e. examples of 

primes are, 

…………(29) 
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Thus each one of the partitions can be represented by integer sub-secrets ��, ��, … , �
 ∈
{0,1, … , (2�� − 1)} uniformly distributed over the entire range since the strings were derived 

from I. I. D. binary random variables. Now consider a coalition of 3 share-holders {�� � , ��̅ , �1̅}. The 

sub-secrets accessible are, Ki, Kj and Kk. An efficient way to extend Shamir's scheme for sharing 

these three secrets is, by choosing a polynomial, 

 

…………(30) 

 
 

where, � ∈ {0,1, … , (2�� − 1)}. The shares given to users Ui, Uj and Uk are three different 

samples of the polynomial P�(�), i.e. P�(� = ��), P�(� = ��) and P�(� = �1) respectively with 

��, �� , �1 ∈ {0,1, … , (2�� − 1)} and available in public domain. When the three share holders pool 

their shares, they can construct three different equations which can be solved to reconstruct the 

polynomial (or solve for the coefficients Ki, Kj and Kk). If any one (or fewer) shares are missing 

then the system of equations is incomplete and none of the sub-secrets can be reconstructed. Thus 

the scheme is computationally secure if Lp is large but there is some information leakage 

regarding the parent polynomial. As a result this scheme becomes a ramp version of Shamir's 

original secret sharing scheme. 

 

Now consider another 3-coalition where exactly one member of the previous coalition is 

displaced by another, i.e. the coalition is ��̅, ��̅ , �Q̅, where Uk has been displaced by Ur. The sub-

secrets available to this coalition are Ki, Kj and Kr. The sharing is done by constructing a new 

polynomial, 

 

…………(31) 

 

and distributing shares P�(� = ��), P�(� = ��) and P�(� = �Q) to users Ui, Uj and Ur respectively, 

ensuring that, 

 

 

 

Each different 3-coalition therefore requires a distribution of three distinct shares to exactly three 

users. Thus the total number of shares distributed per participant for this multi-access structure 

considering only legitimate 3-coalitions is specified as the normalized share length per user, 

FRSTU9VW@Q(';7), 

 

 

 

…………(32) 

 
 

If the 3-coalition expands to include one more user U1, the access set becomes ��̅, ��̅ , �Q̅ , �X̅. This 

4-coalition has access to sub-secrets Ki, Kj, Kr and Kl. An efficient construction would be to 

generate the extended polynomial, 

 

 

…………(33) 

 

 

The only additional share required is P7(� = �X), which is given to Ul. The other users Ui, Uj, Ur 

can use the older shares produced using the polynomial P�(�), i.e. �P�(��), P�(��), P�(�Q)] to 
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reconstruct P�(�) and consequently determine P�(�X). Thus the size of the share required by 

Shamir's ramp scheme is atleast O(n
2
). 

 

5.5 Share Size for MIX-SPLIT ramp construction 

 
The ramp selective access code used for MIX-SPLIT has the structure shown in Eqn. 15. Each 

user is therefore given a share size of v=n units, which correspond to a length of D ∙ F� bits. 

Hence the share size per user with a MIX-SPLIT ramp code is of order O(n), which is 

considerably less as compared to Shamir's ramp. 

 

6. FINE-GRAINED ACCESS OF INDUSTRIAL DESIGNS 
 

An example of a protected bike design is shown in Figure.1. The overall design sketch has been 

encrypted using a block parametric transform [12]. Granularity in access is made possible by first 

partitioning the design into v=5 non-overlapping regions R1, R2, R3, R4, R5 and encrypting them 

with different keys K1, K2, K3, K4 and K5. The encryption process is a linear transformation with 

the help of a modified discrete Fourier transform (DFT) kernel. The following codebook is used 

as a (v = 5, K = 3, n=5)-SAC (ramp code) and is used to produce n=5 shares of the keys using 

the MIX-SPLIT algorithm, 

 

…………(34) 

 

 

 

 

Each share ��̅, i=1,2,..,5 is a mixture of all five key-strings. None of the partitions can be resolved 

when two or fewer shares are combined. Figure.1(a) shows the complete bike design blueprint 

which is a union of all the five regions. When a coalition of any two designers fuse their shares 

(e.g. ����, �7̅�, no part of the design is revealed (Figure.1 (b)). However when a coalition of three 

users combine their shares, depending on the type of coalition, a unique portion of the design is 

made partially visible (Figure.1(c,d,e)). When any four out of the five shares are combined (e.g. 

coalition ����, ��̅, �7̅ , �Y̅�) the complete design is visible (Figure.1(f)).  

 

Hence coalitions of size 2 are considered non-access subsets, coalitions of size 3 partial access 

subsets and coalitions of size greater than 3 complete access sets. 
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Figure 1.  Application of the (v=5, K = 3, n = 5) selective access code towards the protection of Bike 

designs. No part of the design is revealed when any 2 out of 5 shares are fused. When any 3 shares are 

fused, depending on the type of coalition a unique portion of the design is revealed.When any 4 or more 

shares are fused then the complete bike design is revealed. 

 

7. CONCLUSIONS 

 
This paper proposes a ramp code using the MIX-SPLIT construction for fine-grained access 

control of a block of I.I.D. binary strings which could represent a collection of encryption / 

decryption keys in the mixed form, where each key corresponds to a specific fragment (or 

partition) of the parent secret string. Conditional visibility of these partitions can be enforced by 

controlled macro-mixing of the parent secret with a bit-complementary counterpart. This macro-

mixing is done with the help of a codebook which is designed based on some basic rules. One 

such code is the proposed ramp code. 

 

The proposed ramp code designed for fine-grained access has a high granularity and requires a 

much smaller share size of O(n) as compared to Shamir's ramp adaptation which requires a share 

size of atleast O(n
2
). An industrial design access control application using the MIX-SPLIT ramp 

code for securing the key distribution, has been demonstrated. 
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