
David C. Wyld (Eds) : ICCSEA, SPPR, CSIA, WimoA - 2013

pp. 349–357, 2013. © CS & IT-CSCP 2013 DOI : 10.5121/csit.2013.3536

PERFORMANCE COMPARISON ON JAVA
TECHNOLOGIES - A PRACTICAL

APPROACH

Priyanka Dutta, Vasudha Gupta, Sunit Rana

Centre for development of Advanced Computing,

C-56/1, Anusandhan Bhawan, Sector – 62, Noida
(priyankadutta@cdac.in, vasudhagupta@cdac.in, sunitrana@cdac.in)

ABSTRACT

Performance responsiveness and scalability is a make-or-break quality for software. Nearly

everyone runs into performance problems at one time or another. This paper discusses about

performance issues faced during one of the project implemented in java technologies. The

challenges faced during the life cycle of the project and the mitigation actions performed. It

compares 3 java technologies and shows how improvements are made through statistical

analysis in response time of the application. The paper concludes with result analysis.

1. INTRODUCTION

Today’s software development organizations are being asked to do more with less resource. In

many cases, this means upgrading legacy applications to new web-based application with quick

response time and throughput. Nearly everyone runs into performance problems at one time or

another. Focusing on the architecture provides more and potenti
i
ally greater options for

performance tuning for improvement [1].

In one of our project Pre Examination Process Automation System (PEPAS) we also faced such

performance issues. A typical Examination System involves vide range functionalities dealing

with public at large and an efficient communication and feedback mechanism to the utmost

satisfaction of all the users. An error – free speedy interface is vital for successful functioning of

the system [2].There were many challenges while building the application. This paper tries to

explore various Java technologies which could be adopted successfully for efficient application

and performance improvement. Section 2 describes how the technology is chosen. Section 3 deals

with various available technologies in Java, section 4 compares the performance of the

technology used and conclusion.

2. TECHNOLOGY SELECTION

There were too many options available in terms of technology selection and keeping in view the

requirements Decision Analysis and Resolution (DAR) one of the Project management

techniques was utilized to decide on appropriate technology for the project. This Technique is

intended to ensure that critical decisions are made in a scientific and systematic way. The DAR

350 Computer Science & Information Technology (CS & IT)

process is a formal method of evaluating key program decisions and proposed solutions to these

issues [3]. Table- 1 depicts DAR sheet wherein how the technology was chosen to develop the

system is shown.

TABLE 1: DAR Table made for PEPAS

After the careful evaluation of the technology the development bed was chosen. Grails and Adobe

Flex were the chosen technologies as an outcome of the DAR.

Groovy is a dynamic language for the JVM that offers a flexible Java-like syntax that all Java

developers can learn in matter of hours. Grails is an advanced and innovative web-application

framework based on Groovy that enables a developer to establish fast development cycles

through Agile Methodologies and to deliver quality product in reduced amount of time [4]. Grails

Flex Scaffold (GFS) is a plug-in that deals with Flex code generation by scaffolding methodology

[5]. When it came to attractive user interface the use of Adobe Flex was a powerful, open source

application framework that allowed us to easily build the GUI of the application. [6]

Issues Identified

Alternati

ves

Evaluation

Method

Evaluation

Criteria

Remarks Result

1.Present

ation Tier

Technolo

gy

JSP Java

Applet

Adobe

Flex

� Brainstormi

ng

� Comparison

� Ease of

Building Interface

� Richness of

User experience

� Ease of

offloading Logics

to client side

without explicit

installation of

software at the

client side

Browser

Independence.

� Adobe Flex

provides building

Interface with

easy to understand

tutorials over JSP.

� Ease of

Interaction with

J2EE Middle Tier.

(Adobe Flex)

which is not

possible in JSP.

Adobe Flex

iReport

Crystal

Report

� Brainstormi

ng

� Comparison

� Easy to build

reports

� Rich features

� Open source

� Ease of

interaction with

J2EE Middle Tier

iReport

2.Techno

logy for

Middle

Tier

EJB 2

Spring

Grails

� Brainstormi

ng

� Comparison

� Functionality

� Interoperabili

ty

� Advanced

Technology

� Use EJB 2 -

less functionality

over grails.

� Spring –

Interoperability is

complex.

� Grails –

Advanced

Technology

Grails Groovy

GFS (Grails Flex

Scaffolding) with

integration of

Adobe Flex.

Grails On

Grails

Computer Science & Information Technology (CS & IT) 351

The base model was developed and accepted by client. After acceptance the client placed

different work orders. For every work order, customization of the base model was to be made as

per the requirements. Timelines were set for each and every activity including requirements

gathering, development and testing and a work plan was made at the beginning of the project.

Constraints were highlighted. To control the project there is need to compare actual performance

with planned performance and taking corrective action to get the desired outcome when there are

significant differences. By monitoring and measuring progress regularly, identifying variances

from plan, and taking corrective action if required, project control ensures that project objectives

are met.

3. THE CASE ANALYSIS

Performance responsiveness and scalability is a make-or-break quality for software. Two work

orders were completed on time, but following problems were persistent:

1. System Performance was slow

2. Stale Object Exception was thrown

3. Garbage Collector overhead limit exceeded

The problems were discussed and analyzed in the brainstorming session. Discussions were made

for doing extensive code reviews. Using CAR (Causal Analysis and Resolution) technique for

project management drawbacks in existing code reviews was identified and their corrective

actions were planned. Revisiting and evaluating the design and architecture of the system once

again were also discussed. The outcome of various code reviews were some changes like:

a) Change in mail sending process – Earlier mail was sent synchronously after the saving

of registration data. Asynchronous Mechanisms of sending mail like installing and using

Grails Asynchronous Mails Plug-in brings down the response time required for doing

registration. Another advantage of using Grails Asynchronous Mails Plug-in is that the

activity of sending mails may be scheduled or re-tried after certain amount of time. This

feature would be useful in events when Mail Server is heavily loaded or Mail server is

“down”. The implementation of this plug-in requires minimal code changes in the current

application.

b) JVM options to tune JVM Heap size - Java has a couple of settings that help control

how much memory it uses:

a. -Xmx sets the maximum memory heap size

b. -Xms sets the minimum memory heap size

For a server with a 'small' amount of memory, we recommend that -Xms is kept as small as

possible e.g. -Xms 16m. Some set this higher, but that can lead to issues e.g. the command that

restarts tomcat runs a java process. That Java process picks up the same -Xms setting as the

actual Tomcat process. So you will effectively be using two times -Xms when doing a restart. If

you set -Xms too high, then you may run out of memory.

When setting the -Xmx setting you should consider a few things like -Xmx has to be enough for

you to run your application. If it is set too low then you may get Java OutOfMemory exceptions

(even when there is sufficient spare memory on the server). If you have 'spare' memory, then

352 Computer Science & Information Technology (CS & IT)

increasing the -Xmx setting is often a good idea. Just note that the more you allocate to Java the

less will be available to your database server or other applications and less for Linux to cache

your disk reads.

Note that Java can end up using (a lot) more than the -Xmx value worth of memory, since it

allocates extra/separate memory for the Java classes it uses. So the more classes are involved in

your application the more memory that Java process will require.

The PermGen space is used for things that do not change (or change often) e.g. Java classes. So

often large, complex applications will need lots of PermGen space. Similarly if you are doing

frequent war/ear/jar deployments to running servers like Tomcat or JBoss you may need to issue

a server restart after a few deployments or increase your PermGen space. To increase the

PermGen space use something like: -XX:MaxPermSize=128m. The default is 64MB.

(Note that Xmx is separate from the PermGen space, so increasing Xmx will not help with the

PermGen errors).

Since our technology selection was made using DAR hence we revisited our DAR and made two

teams. One team worked upon Java/servelet technology and the second one worked on Spring

Framework. For team one with java/servelet technology oracle database server has been choosen

in place of mysql. A comparative study on query execution time was carried out and we found

that query executed on MySQL is executing 30 times faster than the same query being executed

on ORACLE. So we finally decided that for our application and for the kind of data which we

record, MySQL database gives better performance.

4. PERFORMANCE COMPARISON

One of the most critical aspects of the quality of a software system is its performance and hence

we set our goals to improve the performance of the system. Performance Test from Jmeter was

undertaken. This was done iteratively after tuning the application and each time we get better

result of performance from performance tests. Jmeter is one of the Java tools which are used to

load testing client/server applications. It is used for testing the systems performance which

automatically stimulates the number of users. It is also important to select the right kind of

parameter based on your application for analyzing the test results. Since our application receives

too many hits hence we choose response time as the evaluating parameter. Response time is the

elapsed time from the moment when a given request is sent to the server until the moment when

the last bit of information has returned to the client. We carried out the performance test on our

base application developed with Grails and Flex. We gave inputs of 1 sec, 5sec, 10sec and 60 sec

with sample sets ranging from 20 to 700 users and the report is as follows :

Computer Science & Information Technology (CS & IT) 353

Samples Average

(msec)

Min

(msec)

Max

(msec)

Std.

Dev.

Error

%

Throughput

(/sec)

Avg.

Bytes

1 sec

20 2722 1710 3472 499.36 0 4.88 327

100 31214 297 52071 19425.21 0.24 1.89 1357.64

5 sec

20 315 260 505 64.47 0 3.97 327

50 3629 699 5387 1254.05 0.12 5.76 920.4

100 6098 638 11230 2818.44 0.43 7.95 2453.35

10 sec

20 333 294 530 51.3 0 2.03 327

100 6177 320 9990 2431.46 0.04 5.98 524.8

60 sec

300 494 267 3820 615 0 4.89 327

400 6248 333 15355 3947.63 0.1 6.03 833.86

500 37292 789 113203 30205.56 0.46 3.41 2195.23

700 68532 337 170815 43343.26 0.68 3.39 3088.47

TABLE 2: 1
st
 Jmeter Report with Grails

From the above table it can be seen that average response time for sample set in 10 second for 20

users is coming to be 333 milliseconds with standard deviation of 51.3% which is very high and

the throughput is 2.03 request /sec which is very low. Looking at these statistics it is evident that

the system is unstable.

Performance Tests were also carried out for Java/servelet application which showed results as

below:

Samples Average

(msec)

Min (msec) Max

(msec)

Std.

Dev.

Error % Throughput

(/sec)

Avg.

Bytes

1 sec

1 2870 2870 2870 0 0 0.348432 51283

2 4296 3565 5027 731 0 0.361598 51283

5 8745 4510 12829 3063.947 0 0.36673 51283

10 15295 3597 26190 7458.177 0 0.369072 51283

20 27417 4175 50226 14277.99 0 0.390678 51283

50 65343 4730 125804 36155.33 0 0.394185 51283

100 96242 4240 129667 39525.4 0.49 0.764 26154.33

 5 sec

1 2795 2795 2795 0 0 0.357782 51283

2 3091 3016 3167 75.5 0 0.352734 51283

5 6767 4497 8903 1697.582 0 0.387447 51283

10 12644 3863 20973 5624.403 0 0.39248 51283

50 62592 4064 119374 34217.76 0.02 0.401858 50257.34

100 94558 4128 128009 39101.14 0.48 0.753551 26667.16

 10 sec

1 2734 2734 2734 0 0 0.365764 51283

2 2885 2787 2984 98.5 0 0.25047 51283

5 4424 3436 5284 692.505 0 0.384734 51283

10 10351 3982 17581 4326.702 0 0.393902 51283

20 23640 4082 44047 12011.69 0 0.386473 51283

50 61088 3460 117988 33411.58 0.02 0.397599 50257.34

100 59016 4325 100826 19939.48 0.57 0.91943 22051.69

TABLE 3: Jmeter Report with Java/Servlet

354 Computer Science & Information Technology (CS & IT)

The above result shows that java/servelet version was no way near the grails version in view of

performance of the application.

The Spring Framework provides integration with Hibernate in terms of resource management,

DAO implementation support, and transaction strategies. When we did the performance test on

this we found the following

Samples Average

(msec)

Min (msec) Max (msec) Std. Dev. Error % Throughput

(/sec)

Avg.

Bytes

1 sec

1 189 189 189 0 0 5.291005

102

2 191 191 191 0 0 2.828854

102

5 193 190 196 2.227106 0 4.911591 102

10 878 200 1243 273.9256 0 5.099439 102

20 1841 620 2997 753.7219 0 5.042864 102

50 5490 495 9441 2512.129 0 4.949515 102

100 11706 497 22748 6436.252 0 4.332568 102

5 sec

1 207 207 207 0 0 4.830918 102

2 218 217 219 1 0 0.732064 102

5 208 206 214 2.939388 0 1.188213 102

10 207 200 216 4.019950 0 2.118195 102

20 215 208 230 5.064336 0 4.031445 102

50 2811 280 6004 1486.374 0 4.936321 102

100 8869 311 17970 5450.867 0 4.577078 102

10 sec

1 219 219 219 0 0 4.56621 102

2 233 233 233 0 0 0.381025 102

5 227 224 229 1.854724 0 0.606796 102

10 225 220 230 2.98161 0 1.084599 102

20 223 219 235 4.130375 0 2.054232 102

50 888 331 2299 506.5207 0 4.483903 102

100 7162 373 17162 656.5207 0 4.445432 102

TABLE 4: Jmeter Report with Spring Framework

In the mean time when we were exploring and testing with other technologies we also did

optimization of Grails version wherein we took following major corrective measures:

a) Removed bidirectional mappings which helped us to remove the unnecessary tables created

by the mapping to store the values.

b) Explicitly clearing the Hibernate Session Level/1st Level Cache increases the performances.

Hibernate 1st Level cache is a transaction-level cache of persistent data. It was seen that

when this transaction-level cache is cleared, write performance of the system was increased.

Initial load testing shows 5 x improvements in terms of Time Taken to insert for doing this

test, 3000 inserts were made without clearing Hibernate 1st level cache which took around

240 sec. After clearing the Hibernate 1st Level cache, the same operation took 45sec.

c) By default Hibernate uses, Optimistic Locking strategies by the use of versioning. The system

experiences high number of concurrent reads and writes. In such situations optimistic locking

fails and throws an exception for Stale Object. The default behavior of Hibernate was

changed from optimistic to pessimistic locking for avoiding this error. The change required

Computer Science & Information Technology (CS & IT) 355

minimal code modification. The change however, may result in some performance penalty as

there will be row level locking for reads.

d) For implementing row level locking, the Storage engine of MySQL was changed from

MyISAM (which is tuned for High Performance without being ACID compliant) to InnoDB

(which is tuned to support transactions and is fully ACID Complaint)

e) Worked on the query optimization and removal of unnecessary queries which were building

load on mysql.

f) Initially the images were stored in the database along with the path and also on the

application server which made the size of the application bulky and created lots of problems

while retrieving the images for generation of application form or admit card. Now, the images

are stored in a separate folder outside the webapps which helped in improving the

performance of the application.

After doing all the above changes the application was tested with Jmeter to find the performance

result which is depicted below:

Samples Average

(msec)

Min

(msec)

Max

(msec)

Std. Dev. Error % Throughput

(/sec)

Avg. Bytes

1 sec

1 47 47 47 0 0 21.2766 683

2 47 47 48 0.5 0 3.656307 683

5 48 47 52 1.939072 0 5.820722 683

10 49 46 54 3.257299 0 10.41667 683

20 50 46 59 4.093898 0 19.32367 683

50 791 146 1199 289.9754 0 23.57379 683

100 1973 104 3858 1051.758 0 23.94063 683

 5 sec

1 47 47 47 0 0 21.2766 683

2 48 47 50 1.5 0 0.784314 683

5 49 46 54 3.03315 0 1.230921 683

10 55 52 63 2.712932 0 2.194908 683

20 57 53 75 5.634714 0 4.148517 683

50 48 46 62 3.589763 0 10.006 683.38

100 51 46 62 4.430564 0 19.73165 683.19

10 sec

1 48 48 48 0 0 20.83333 683

2 56 56 57 0.5 0 0.395491 683

5 54 51 60 3.544009 0 0.620887 683

10 58 52 79 8.971622 0 1.101443 683

20 56 50 76 7.031358 0 2.093145 683

50 49 46 68 4.422669 0 5.071508 683

100 49 46 77 4.272985 0 10.0311 683.19

60 sec

300 53 47 106 6.930367 0 4.990435 683.19

400 51 47 114 5.434344 0 6.640327 683.19

500 50 46 96 5.398905 0 8.287201 683.19

700 50 45 178 8.207943 0 11.55726 683.19

TABLE 5: After optimization Jmeter report of Groovy Grails Version

The results showed that in 1sec with 1 user when compared with spring version Grails showed an

improvement of 75% in response time and throughput increased to various folds from 5.2

requests/sec to 21.2 request/sec. A comparative analysis of the three technologies is shown below

356 Computer Science & Information Technology (CS & IT)

with respect to response time and standard deviation. The results show that Grails is giving the

best performance and hence is the rightly chosen technology.

Figure 1: Graph showing comparative analysis of Table3, Table4 and Table 5 in average response time

with number of users in 1 sec

Figure 2: Graph showing comparative analysis of Table3, Table4 and Table 5 in standard deviation with

number of users in 1 sec

When we compared this report to the first test report of Grails version we found that for 10 sec

with 20 samples there was an overall improvement in response time and standard deviation.

Response time is improved to 83% and there is 86% improvement in standard deviation which is

remarkable in itself.

Samples Average(

msec)

Min

(msec)

Max

(msec)

Std. Dev. Error % Throughput

(/sec)

KB/sec Avg.

Bytes

10 sec

20 333 294 530 51.3 0 2.03 0.65 327

20 56 50 76 7.031358 0 2.093145 1.396111 683

TABLE 6: Comparison of 1
st
 v/s Optimized Groovy Grails Report

It is also to be noted that now for 60 sec with 700 users the response time is 50 milliseconds and

standard deviation is 8.2 and throughput is 11.5 request/sec.

Computer Science & Information Technology (CS & IT) 357

5. CONCLUSION

Comparison of the three technologies namely Java/servelet, spring framework and Grails for

performance led us to the result that Grails is a better performing platform for the project we

undertook. Things like RSS feeds and domain modeling allows for faster development of the

application while allowing the focus to be on functional code. The system through various

optimizations has shown an overall improvement of 84 % in response time and 93% in standard

deviations. In latest work order the system did not show any performance issues and the servers

functioned smoothly without any downtime. After improvements done in our system we did not

faced any memory leak issues. Through continuous improvement of the application we have been

able to gain customer satisfaction.

ACKNOWLEDGEMENT

The authors would like to thank Mrs. R.T.Sundari for her continuous guidance in writing the

paper. They would also like to thank the EdCIL PEPAS team for their continuous effort in

improving the application.

REFERENCES

[1] Five Steps to Solving Software Performance Problems by Lloyd G. Williams, Ph.D.,Connie U. Smith,

Ph.D.

[2] Application of the Decision Analysis Resolution and Quantitative Project Management Technique

for Systems Developed Under Rapid Prototype Model by Priyanka Dutta, Vasudha Gupta, Santosh

Singh Chauhan

[3] http://www.processgroup.com/pgpostoct05.pdf

[4] http://www.springsource.com/developer/grails

[5] http://grails.org/plugin/flex-scaffold+1

[6] http://www.adobe.com/products/flex.html

[7] http://grails.org/plugin/asynchronous-mail

