AN ALTERNATIVE APPROACH FOR
SELECTION OF
PSEUDO RANDOM NUMBERS
FOR ONLINE EXAMINATION SYSTEM

Shilpi Kumari Shawl, Aakash Sharmaz, Shoubhik Chowdhury3,
Aritra Biswas4, Arnab Mitra’

12345 Department of Computer Science & Engineering
Adamas Institute of Technology, Barasat-700126, India

{shilpishaw.ait, aakashcal9l, shoubhikchowdhury91,
biswas.aritra8, mitra.arnab}@gmail.com

ABSTRACT

Fast and accurate selection of random pattern is needed for many scientific and commercial
applications. One of the major applications is Online Examination system. In this paper, a
sophisticated approach has been developed for the selection of uniform pseudo random pattern
for Online Examination System. Three random integer generators have been compared for this
purpose. Most commonly used procedural language based pseudo random number; PHP
random generator and atmospheric noise based true random number generator have been
considered for easy generation of random patterns. The test result shows a varying degree of
improvement in the quality of randomness of the generated patterns. The randomness quality of
the generated pseudo random pattern has been assured by diehard test suite. An experimental
outcome for our recommended approach signifies that our approach selects a quality set of
random pattern for Online Examination System.

KEYWORDS

Pseudo random number generator (PRNG), Pseudo random Pattern Generator (PRPG),
Procedural Language Random Number Generator (PrRNG), PHP random Number Generator
(PHPRNG), True Random Number Generator (TrRNG), Online Examination System (OES)

1. INTRODUCTION

Random number [1], [2] is a number engendered by a method, whose consequence is volatile, and
which cannot be sub sequentially dependably replicated. It is purely impossible to authenticate
whether the certain number was formed by a random number generator or not. In order to study
the predictability of the output of such a producer, it is therefore unconditionally essential to
reflect order of number. It is pretty direct to express whether an order of infinite extent is random
or not. This arrangement is random if the amount of info it covers — in the logic of Shannon's
information concept — is also infinite. In additional falling out, it must not be probable for a
processer, whose extent is finite, to produces this arrangement. Excitingly, an infinite random
arrangement comprises all probable predetermined sequences. Such an unbounded arrangement
does for instance hold the Microsoft Windows source code or the copy of the Geneva

Rupak Bhattacharyya et al. (Eds) : ACER 2013,
pp. 269-278, 2013. © CS & IT-CSCP 2013 DOI': 10.5121/¢sit.2013.3225



270 Computer Science & Information Technology (CS & IT)

conventions. Unfortunately, this description is not very worthwhile, as it is not promising in
exercise to create and practice infinite orders.

In the case of a finite arrangement [3] of figures, it is validly difficult to confirm whether it is
random or not. It is only conceivable to check that it shares the statistical stuffs of a random
arrangement— similar to equi-probability of the whole numbers — but this is a challenging and
complex task. To demonstrate this, let us for specimen consider a binary random number
generator constructing sequences of ten bits. Although it is precisely as probable as any other ten
bits sequences, 0 0 0 0 000 0 0 0 does look a lesser randomthan 100101011 1.

Pseudo-random number generators (PRNGs) [4], [5] are algorithms to instinctively produce
elongated runs of numbers with superior random properties however eventually the series repeats.
The sequence of values evaluated by such algorithms is frequently resolute by a rigid number
known as a seed [4]. The most frequent PRNG is the linear congruential generator, which utilizes
the recurrence in Equation 1.

A =(*A +d)ymodm ...... (1)

where A is the sequence of pseudorandom values, and
m, 0 < m — the "modulus”;

¢, 0 < ¢ < m — the "multiplier";

d, 0 < d < m — the "increment";

Ag, 0 < Ay< m — the "seed" or "start value".

There exist two major ways used to produce [6] random numbers. One processes certain physical
phenomenon that is probable to be random and then recompenses for probable biases in the
measurement procedure. The further practices computational algorithms that can yield long
arrangements of apparently random outcomes, which are in fact absolutely determined by a
smaller primary value, well-known as a seed. The latter forms are frequently known
as pseudorandom number generators.

Many extents of statistical investigation, research, and simulation depend on the superiority of
random number generators. Maximum programs for statistical data analysis comprise a function
for producing uniform random numbers. The Diehard suite [5] of tests has grown into a standard
technique of evaluating the superiority of uniform random number generator procedures

Diehard tests [5], [7-8] are a battery of statistical test to measure the standard of random number
generated. At first it was developed by George Marsaglia and first issued in 1995 on a CD-ROM
of random numbers. Soon after advanced version of this statistical test been reformed and
circulated thru University of Hong Kong.

The below mentioned tests are performed to extent the feature of the randomness of an individual
random pattern creator:

i.  Birthday spacings: The name birthday spacing is centred on birthday paradox. Here
random points are selected on a large interval with the asymptotically exponentially
distributed spacing among the points.

ii.  Overlapping permutation: This test always analyse five successive random number
arrangements, with statically identical probability, a total 120 possible ordering should
occur.

iii.  Ranks of matrices: choose few number of bits from certain amount of random number to
formulate a matrix over [0, 1], then govern the rank of the matrix on the basis of
determinant value of matrix.

iv.  Monkey tests: The name monkey test is based on infinite monkey theorem. In this test
sequence of few numbers of bits is considered as “words”. Therefore overlapping word



Computer Science & Information Technology (CS & IT) 271

present in a stream be counted. Any known distribution be followed by the number of
“words” that don’t appear.

v.  Count the 1’s: In this test, count the 1bit in every single of either successive or chosen
bytes. Then convert the counted values into “letters” and lastly following the counting of
the existences of five-letter ‘words”.

vi.  Parking lot test: Unit circle in a 100 x 100 square placed randomly is tested to search
whether any of the circles, overlaps a present one. After a repetition of 12000 tries, the
number of effectively “parked” circles would follow a certain normal distribution.

vii. ~ Minimum distance test: In this test, place randomly 8000 points in a 10.000 x 10.000
squares, after that minimum distance between the pair is to be found. The square
of the distance with a certain mean is exponentially distributed.

Viii. Random spheres test: In this test, in a cube of edge 1,000, choose randomly 4,000
points. On each point a sphere is to be centred, whose radius is the least distance to
another point.

ix.  The smallest sphere’s volume ought to be exponentially distributed using a certain mean.

x.  The squeeze test: Until one reach 1, multiply 2°' by random floats on [0,1). Repeat this
thing 100,000 times. The number of floats required to arrive at 1 should pursue a certain
distribution.

xi.  Overlapping sums test: Create a extended series of random floats on [0,1]. Add series
of 100 successive floats. The sums have to be normally distributed with
characteristic mean with sigma.

xii.  Runs test: create a extended sequence of random floats on [0, 1). Count up ascending
and descending runs. The counts have to pursue a certain distribution.

xiii.  The craps test: Count the success and the number of toss per game, play 200,000 games
of craps. Each count ought to pursue a certain distribution.

The organization of this paper is as follows: Section 2 briefly discusses the related work. Section
3 expounds the proposed work. Section 4 records the experimental results. Section 5 draws the
conclusion. Section 6 is devoted to acknowledgements, and Section 7 includes references.

2. RELATED WORK

A number of methods have been applied [9-13], [16] to generate better quality random numbers.
Some novel labours have been established to produce better quality random numbers. Some
significant efforts have also been made to produce pseudo-random numbers. Among all Intel true
random number and true random number generation by Random.org is pretty remarkable where
atmospheric noise is applied as the seed.

A true random number[14], [15] producer is a section of electronics that plugs inside a computer
and yields genuine random numbers as disparate to the pseudo-random numbers that are created
by a computer program. The standard technique is to intensify noise produced thru a resistor
(Johnson noise) or a semi-conductor diode and feed this to a Schmitt trigger or comparator. If one
samples the out-come (not too rapidly) get a sequence of bits which are statistically autonomous.
Utmost random numbers [4] applied in computer programs are pseudo-random, which means they
are created in a expectable fashion via a mathematical formulation. This is adequate for several
purposes; however it might not stay random in the way one imagines if it used to gamble like dice
rolls and lottery drawings.

RANDOM.ORG [16], [17] proposed true random numbers to any person on the Internet. The
randomness originates from atmospheric noise, which for numerous drives is superior to the
pseudo-random number algorithms usually applied in computer programs. For gambling sites, for
scientific applications and for art and music people use RANDOM.ORG.



272 Computer Science & Information Technology (CS & IT)

3. PROPOSED WORK

Generation of our algorithm is to obtain random question number in on-line examination system
using PHP. Compare to other similar on-line examination system this system is more innovative
because of the generation of pseudo random pattern, as a result none of the question get repeated
at boundless instant of time.

Procedural language provides random number generation function rand(), which is found in
<stdlib.h> header. Function rand actually produces pseudorandom numbers. Calling rand
recurrently produces a arrangement of numbers that seems to be random.

Based on the above mentioned, the following flowchart 1 and Algorithm 1, should generate the
random integer set in procedural language.

START

/ SET THE SEED VALUE /

h
GEMERATE THE RANDOWM PATTEEN

h
STOFE THE PATTEEN IN A FILE

STOF

Figure 1: Flow chart for generating a random pattern in procedural language

Similarly just like Procedural Language random function, PHP also have its own random function
mt_rand().The number generated in PHP is uniformly distributed over the specified range. PHP
integers are 32 or 64 bits wide, and are represented by means of two's complement arithmetic.
Based on the above mentioned, the following flowchart 2 and Algorithm 2, should generate the
random integer set in PHP.



Computer Science & Information Technology (CS & IT) 273

/ SET THE SEED VALUE =0 /

GEMERATE THE SEED VALUE

h J
GEMNEFATE THE RANDOM PATTEEN

h J
STORE THE PATTERN IN A FILE

STOF

Figure 2: Flow chart for generating a random pattern in Scripting Language

Finally the proposed algorithm which has been proved to be better compare to previous
algorithms, and gave better randomness quality. The following flowchart 3 and Algorithm 3
should generate the random integer set.

GEMEFRATE EANDOM NUMBER.

'

RETRIEVE THE
CORROSPONDING ROW

h 4
IMNSERT THE CORROSPONDING

ROW VALUES INTO AN AFRAY

h 4
FETCH THOSE ARFAY VALUES

SUBSEQUENTLY

STOF

Figure 3: Flow chart for selecting a true random sequence for online examination



274 Computer Science & Information Technology (CS & IT)

Algorithm 1: Selection of Pseudo Random Pattern Sequence

Input: Set of true random sequence

Output: Random pattern for randomly generated question set
(Write this following algorithm in step wise only. no pseudocode)

STEP 1: Start
STEP 2: Generating a random number using the seed value.

STEP 3: According to the random number, the position has been found from the file in which
the pseudo random patterns are stored.
STEP 3.1: Searching the random number from the file.
STEP 3.2: In the case of more than one digit number, the digits are concatenated with
each other.
STEP 3.3: The total string has been converted into integer.

STEP 4: After matching the first element, insert the corresponding row elements into the array.

STEP 4.1: Insert the element into the first position of the array until a space is occurred.
Checks the next field is blank or a new line
If matched

The previous value has put into the array

STEP 4.2: Repeat the above step (STEP 4.2) until a new line or the end of the file
(EOF) is reached.

STEP 4.3: The elements that are found in the row are converted to integer value.

STEP 5: Print the array elements of the selected row.
STEP 6: Get the selected random pattern sequence for randomly selected question set.

STEP 7: End

Our proposed above algorithm have generated random number up to 3 digits. That means it can
generate up to 1000 random sequences which is much more than our requirement for online
examination purpose, as we know in an exam session we hardly require 40/50 question. Further
this algorithm is also efficient to produce random numbers larger than 3 digits on requirement,
which has been shown in Figure 4(b).

4. EXPERIMENTAL OBSERVATION AND RESULT ANALYSIS

The given file contains the random patters stored in text format.

B 1 AT L R S O T b i e O S O T R I e b I L

26 386 181 369 322 356 434 213 240 47 264 275 227 416 367 477
412 415 336 388 392 169 342 S8 141 299 399 366 286 186 12
R WL e L R ke S PR P A g LR L e )
18 13 416 328 381 459 3P@ 425 488 446 250 260 136 386 123
TR R TP i SR & R bt e L RS P VP B CE L B e e
143 61 164 298 185 97 418 388 15 182 18 332 162 133 185

L R L R R W T S v e R B R G
424 243 216 483 293 348 416 23 198 259 79 @ 28 87 461 1
10 442 184 284 298 3260 198 336 1%6 1688 64 47 288 272 9@ 364 18

Figure 4(a): The text file in which the true random sequences are stored



Computer Science & Information Technology (CS & IT) 275

890 14388 7875 9123 13193 12189 8786 11377 18778 13568 9666
891 10681 18460 11678 13662 9999 9194 9383 13667 18786 14277
892 9968 12884 9869 13768 12735 134081 8811 9733 14@47 14245
893 9008 18226 1@525 1A182 12288 13457 14170 13443 13343 14458
894 12551 9851 9322 9241 9418 12689 18369 1@7%% 9324 12863

895 14466 11150 12664 12576 12943 8835 1@447 11485 9453 14232
896 18347 18258 1@546 11680 12193 11722 8985 7843 11788 108676
897 11478 12085 10131 12531 9461 18787 18772 11828 11191 13363
898 14872 12387 16365 13869 12981 12796 11794 9416 18355 18174
899 18212 13778 7108 8974 8700 9329 14199 9785 14178 18011

960 11858 12923 9226 12621 11392 12446 9776 11514 12967 9454
981 18859 13984 9732 10665 18846 11975 133089 14399 18938 11365
9682 8717 13229 13609 9119 9826 13948 12045 1@997 18968 11169
983 12651 12187 9738 116@5 9447 8737 11774 12587 9836 9143

964 11638 11619 12520 9168 18917 9809 13348 18456 9345 11323
9685 10844 1A5A3 11482 12338 14043 13559 18954 9838 13253 12194
986 13393 13292 12140 11899 9169 12069 9125 14165 9046 132082
987 9877 9859 13135 13854 9527 8843 11281 1@5A5 13339 19434
9688 12382 13172 13458 12676 11068 14846 1G828 1@466 13950 %638

Figure 4(b): The text file in which the true random sequences are stored

The algorithm generates a random number between O to (seed value - 1), i.e. O - 9 in this example.
It then starts searching from the beginning of the text file containing the random patterns. If the
first number matches the random number, the entire row containing the random pattern is taken
into an integer array else the row is scanned simply as text. The algorithm then scans the first
element of the next row. If the number is found, it takes the random pattern into the array else
continues searching. The algorithm continues until the random number is matched with the first
element and the corresponding random pattern is selected.

RANDOM PATTERN SELECTION

Searching Element..

um = 4 FOUMD?

ORRESPONDING RANDOM PATTERN - ARRAY ELEMENTS:

207 19 429 377 394 285 139 49 397 287 253 371 33 12 163 369 389 393 121 129 45
112 17 325 263 135 47 40 158 381 157 492 398 132 482 280 146 12@ 228 255 197 479
485 312 211 61 168 385 65 246 332 6 2@5 272 239 292 106 87 9 327 53 275 195 148
270 200 72 422 484 64 265 486 69 68 497 273 83 395 363 307 145 483 367 162 150
134 198 269 33@ 153 328 365 223 82 24@ 485 297 354 398 119 _

Figure 5(a): Outcomes of the Proposed Algorithm



276 Computer Science & Information Technology (CS & IT)
RANDOM PATTERN SELECTION

[Generated Random Number<SEED UAL = 1888> = 895

lEearching Element..

[Num = 895 FOUND?

JCORRESPONDING RANDOM PATTERN — ARRAY ELEMENIS:

8748 11948 15762 15633 9916 9879 8821 148785 11354 18729 16243 11589 8233 9561 11
78 11669 12842 7556 18644 8928 BBY? 15543 12575 13535 13543 9935 15357 12655 B6
4 12354 13921 16351 7574 16375 11121 14994 7769 18823 8952 2771 9656 8570 1M8AS
14579 14497 16313 11565 12184 11465 10902 13664 11658 13501 13966 9862 11583 11
669 14753 18521 8178 18417 14543 11961 15165 12537 11681 12258 15318 16262 8948
121@7 13113 15465 141686 189280 13849 2122 8631 7647 8161 14884 16768 13718 V595 1
718 15989 9283 13785 14624 16373 14734 15826 13818 15773 18174 18468 8577 160392
11884 8275

Figure 5(b): Outcomes of the Proposed Algorithm

Centred on this factor Table 2 replicates the end result of Diehard tests. The examined outcomes
can be observed in Figure 4 with graph, which demonstrate the improved feature of randomness
for resultant random integer originator

.Most of the tests in DIEHARD returns a p-value, which should be uniform on [0, 1) if the input
file contains truly independent random bits. Those p-values are chosen up by p=F(Y), where F is
the presumed distribution of the sample random variable Y---often normal. But that presumed F is
just an asymptotic approximation, for which the fit will be worst in the tails. Thus outcome
should not be surprised with occasional p-values near O or 1, such as .0012 or .9983. When a bit
stream really FAILS BIG, it will get p's of 0 or 1 to six or more places. By every means, the
value of p <.025 or p> .975 means that the RNG has "failed the test at the .05 level".

Table 1: Diehard Test

Test Number Diehard Test Name
1. Birthday Spacings
2. GCD
3 Gorilla
4. Overlapping Permutations
5. Ranks of 31x31 and 32x32 matrices
6. Ranks of 6x8 Matrices
7. The Bitstream Test
8. Monkey Tests OPSO,0QSO,DNA
9. Count the 17s in a Stream of Bytes
10. Count the 1°s in Specific Bytes
11. Parking Lot Test
12. Minimum Distance Test
13. Random Spheres Test
14. The Sqeeze Test
15. Overlapping sums Tests
16. Runs Up and Down Test
17. The Craps Test




Computer Science & Information Technology (CS & IT)

Table 2: Test Result

Diehard Test | Procedural PHP TRNG
Number Language

1. Fail Fail Pass
2. Fail Fail Fail
3. Fail Fail Fail
4. Fail Fail Pass
5. Fail Fail Fail
6. Fail Fail Pass
7. Fail Fail Fail
8. Fail Fail Pass
9. Fail Fail Pass
10. Fail Fail Pass
11. Fail Fail Pass
12. Fail Fail Pass
13. Fail Fail Pass
14. Fail Fail Pass
15. Fail Fail Pass
16. Fail Fail Pass
17. Fail Fail Pass

Total Number

of Diehard Test 0 0 13

Passes

14

1z

10

8

6 o TRNG

4

2

o

Pr RMG PHP RMNG TRUE RMNG

Figure: 6 Result of the above mentioned table is shown in the following graph.

277

The graph below show the randomness quality of a random pattern developed in C language,

PHP, and proposed algorithm.

Procedural language has its own random function for generating random pattern, this function

give a random pattern between 0 to 99, which is plotted in the given graph in yellow colour.

Similarly PHP has also its own random function for generating random pattern, its randomness is
also plated in the same graph with pink colour.

But after comparing the proposed algorithm for random pattern generation with C’s and PHP’s
random pattern generation function by plotting the randomness in the same graph with blue
colour by taking different values, the outcomes shows that this proposed algorithm gives

improved random quality.



278 Computer Science & Information Technology (CS & IT)
Outcomes based on figure 8, it can be concluded that our proposed algorithm can be appliance as
an enhanced source of random patterns as it have maximum amount of randomness with allusion

to all further random function.

1200

1000

800 itk

| 1 i I !
I | ' i
600 o i - il il b i BRI,  —— FrRNG

| ! i ——rPHPRNG

=—TRNG

200
._.T[Jr. A
# 1| e sl |
0 | M £
— o O WM~ LWL s MmN SO0~ DWW MmN oo 0~ W
N MmN~ MW~ A NS O0oNT DO A MWmEeO
dO0UCIRRNAREARNMAERERREZRRR R

Figure 8: Randomness testing with higher number of data set

5. CONCLUSION

The algorithm selects a better random pattern and shows that the number selected from the pattern
has no repetition. The graph represents as figure 2 express the superiority of randomness archived
by this algorithm.

So as per our requirement, through this algorithm we can achieve random questions for our online
examination system, and thus meets our requirements.

REFERENCES

[1]  http://en.wikipedia.org/wiki/Random_Number

[2] Arnab Mitra, Anirban Kundu; (2012) Cost optimized Approach to Random Numbers in Cellular Automata;
The Second International Conference on Computer Science, Engineering & Applications (ICCSEA); India

[3] Wolfram; Wolfram Mathematica Tutorial Collection: Random Number
http://'www.wolfram.com/learningcenter/tutorialcollection/RandomNumberGeneration/.pdf

[4] http://en.wikipedia.org/wiki/Pseudorandom_number_generator

[5] Arnab Mitra, Anirban Kundu; (2012) Cost Optimized Design Technique for Pseudo-Random Numbers in
Cellular Automata; International Journal of Advanced Information Technology (IJAIT) Vol. 2, No.3, June
2012

[6] http://en.wikipedia.org/wiki/Random_Number_Generationen.wikipedia.org/wiki/Diehard_tests

[71 Robert G. Brown. dieharder: A Random Number Test Suite, 2006a.

[8] http://www.phy.duke.edu/~rgb/General/dieharder.php. C program archive dieharder, version 1.4.24.

[9] Colin Plumb; (1994) “Truly Random Numbers”; Dr.Dobbs Journal, November 1994, p.113.

[10] Tim Matthews; (1995) “Suggestions for random number generation in software”; RSA Data Security
Engineering Report, 15 December 1995.

[11] Boaz Barak and Shai Halevi; (2005) An architecture for robust pseudo-random generation and applications
to /dev/random; In Proc. ACM Conf. on Computing and Communication Security (ACM CCS); 2005.

[12] B. Jun and P. Kocher; (1999) The Intel Random Number Generator.; Cryptography Research Inc. white
paper, Apr. 1999.

[13] Matsumoto, M. and Nishimura, T. (1998), “Mersenne-Twister: A 623-Dimensionally Equidistributed
Uniform Pseudo-Random Number Generator,” ACM Transactions on Modeling and Computer Simulation,
8:1, pp. 3- 30..

[14] http://en.wikipedia.org/wiki/True_Random_Number_Generator

[15] Dirk Eddelbuettel; Random: An R package for true random numbers;
http://dirk.eddelbuettel.com/bio/papers.html

[16] www.random.org

[17] http:// www.random.org/randomness/



