

Natarajan Meghanathan, et al. (Eds): ITCS, SIP, JSE-2012, CS & IT 04, pp. 443–454, 2012.

© CS & IT-CSCP 2012 DOI : 10.5121/csit.2012.2140

PROGRAM TEST DATA GENERATION FOR

BRANCH COVERAGE WITH GENETIC

ALGORITHM: COMPARATIVE EVALUATION OF

A MAXIMIZATION AND MINIMIZATION

APPROACH

AnkurPachauriand Gursaran

Department of Mathematics, Dayalbagh Educational Institute, Agra 282110
ankurpachauri@gmail.com, gursaran.db@gmail.com

ABSTRACT

In search based test data generation, the problem of test data generation is reduced to that of

function minimization or maximization.Traditionally, for branch testing, the problem of test data

generation has been formulated as a minimization problem. In this paper we define an alternate

maximization formulation and experimentally compare it with the minimization formulation. We

use a genetic algorithm as the search technique and in addition to the usual genetic algorithm

operators we also employ the path prefix strategy as a branch ordering strategy and memory and

elitism. Results indicate that there is no significant difference in the performance or the coverage

obtained through the two approaches and either could be used in test data generation when

coupled with the path prefix strategy, memory and elitism.

KEYWORDS

Search based test data generation, program test data generation, genetic algorithm, software

testing

1. INTRODUCTION

Search-based software test data generation has emerged [1, 2, 3, 4, 5, 6] as a significant area of

research in software engineering. In search based test data generation, the problem of test data

generation is reduced to that of function minimization or maximization. The source code is

instrumented to collect information about the program as it executes. Collected information is

used to heuristically measure how close the test data is to satisfying the test requirements. The

measure is then used to modify the input parameters to progressively move towards satisfying the

test requirement. It is here that the application of metaheuristic search techniques has been

explored. Traditionally, for branch testing, the problem of test data generation has been

formulated as a minimization problem. In this paper we define an alternate maximization

formulation and experimentally compare with the traditional minimization formulation.

During testing, program P under test is executed on a test set of test data - a specific point in the

input domain - and the results are evaluated. The test set is constructed to satisfy a test adequacy

criterion that specifies test requirements [7, 8]. The branch coverage criterion is a test adequacy

444 Computer Science & Information Technology (CS & IT)

criterion that is based on the program flow graph. More formally, a test set T is said to satisfy the

branch coverage criterion if on executing P on T, every branch in P’s flow graph is traversed at

least once.

Metaheuristic techniques such as genetic algorithms [9], quantum particle swarm optimization

[10], scatter search [11] and others have been applied to the problem of automated test data

generation and provide evidence of their successful application. Amongst these several have

addressed the issue of test data generation with program-based criteria [10]and in particular the

branch coverage criterion [10, 11, 12, 13, 14, 15, 16, 17, 18].Further, [12, 13, 14, 19, 20] have

formulated the problem as a minimization problem.

In this paper, in Section 2 we describe the Genetic Algorithm (GA) and we outline the application

of GAs for test data generation in Section 3. In Section 3 we also introduce the maximization and

minimization approaches. In Section 4 we present the experimental setup and in Section 5 we

discuss the results of the experiments. Section 6 concludes the paper.

2. GENETIC ALGORITHM

Genetic Algorithm (GA)is a search algorithm that is based on the idea of genetics and evolution

in which new and fitter set of string individuals are created by combining portions of fittest string

individuals of the parent population[21]. A genetic algorithm execution begins with a random

initial population of candidate solutions {si} to an objective function f(s). Each candidate si is

generally a vector of parameters to the function f(s) and usually appears as an encoded binary

string (or bit string) called a chromosome or a binary individual. An encoded parameter is

referred to as a gene, where the parameter’s values are the gene’s alleles. If there are m inputs

parameters with the i
th
 parameter expressed in ni bits, then the length of the chromosome is

simply∑
i

in . In this paper each binary individual, or chromosome, represents an encoding of test

data.

After creating the initial population, each chromosome is evaluated and assigned a fitness value.

Evaluation is based on a fitness function that is problem dependent. From this initial selection, the

population of chromosomes iteratively evolves to one in which candidates satisfy some

termination criteria or, as in our case, fail to make any forward progress. Each iteration step is

also called a generation.

Each generation may be viewed as a two stage process [21]. Beginning with the current

population, selection is applied to create an intermediate population and then recombination and

mutation are applied to create the next population. The most common selection scheme is the

roulette-wheel selection in which each chromosome is allocated a wheel slot of size in proportion

to its fitness. By repeatedly spinning the wheel, individual chromosomes are chosen using

“stochastic sampling with replacement” to construct the intermediate population. Additionally

with elitism the fittest chromosomes survive from one population to the other.

After selection, crossover, i.e., recombination, is applied to randomly paired strings with a

probability. Amongst the various crossover schemes are the one point, two point and the uniform

crossover schemes [21]. In the one point case a crossover point is identified in the chromosome

bit string at random and the portions of chromosomes following the crossover point, in the paired

chromosomes, are interchanged. In addition to crossover, mutation is used to prevent permanent

loss of any particular bit or allele. Mutation application also introduces genetic diversity.

Mutation results in the flipping of bits in a chromosome according to a mutation probability

which is generally kept very low.

Computer Science & Information Technology (CS & IT) 445

The chromosome length, population size, and the various probability values in a GA application

are referred to as the GA parameters in this paper. Selection, crossover, mutation are also referred

to as the GA operators.

3. TEST DATA GENERATION FOR BRANCH COVERAGE USING GA

Let P be the program under test, then a general sequence of steps for test data generation using

genetic algorithm is described in Figure 1.

1. Choose an appropriate test adequacy criterion. This in our case is the branch coverage

criterion.

2. Setup the genetic algorithm.

a. Select a representation for test data to be input to program P.

b. Define a fitness function.

c. Instrument the program P to create program Pt. The instrumented program Pt is used

directly for test data generation.

d. Select suitable genetic algorithm parameters and operators.

3. Generate test data.

a. Run the genetic algorithm for test data generation using Pt for fitness computation.

b. Identify and eliminate infeasibility.

c. Regenerate test data if necessary.

Figure 1.Test data generation using genetic algorithm

In search based test data generation, test data is generated to meet the requirements of a particular

test adequacy criterion. The criterion in our case is the branch coverage criterion. The setup phase

begins with the choice of a suitable representation for test data and the identification of a suitable

fitness function.

The inputs for one execution of P, i.e., a single test data, are represented in a binary string also

called a binary individual. For instance, if the input to P is a pair of integers x= (I1, I2), then this

pair is represented as shown in Figure 2. The length of the substrings representing I1 and I2 are

chosen to represent the largest legal value that can be input to P. The length of the complete

string is the sum of the lengths of the two substrings.

Figure 2. Binary string representation

One bit

position

Binary string

representing I1

Binary string

representing I2

446 Computer Science & Information Technology (CS & IT)

The fitness of a binary individual is computed as

Fitness (x) = Approximation Level + Normalized Branch Distance

Traditionally, test data generation problem is formulated as a minimization problem as in [12,

13, 14, 19, 20] in which the approach level numbering starts from the target branch and the

normalized branch distance is computed as,

Normalized Branch Distance = 1- 1.001
-distance

As opposed to this, the test data generation problem can also be formulated as a maximization

problem. The definition of approximation level and normalized branch distance is also different

from [2] although the basic idea is similar.

Figure 3.Approximation Level and Branch Distance Computation

0

2

4

6

6

TARGET

False

False

False

False

False

(a<=0 || b<=0 || c<=0)

Target Missed

Approximation Level 0

Branch Distance =

Min ((a-0), (b-0), (c-0))

(a>10000 || b>10000 || c>10000)

Target Missed

Approximation Level 1

Branch Distance =

Min ((10000-a), (10000-b), (10000-c))
(c==a+b)

Target Missed

Approximation Level 2

Branch Distance =

Abs(c-(a+b))
(a<=b && b<=c || c<=2)

Target Missed

Approximation Level 3

Branch Distance =

Min (((a-b) + (b-c)), (c-2))
(b!= a+c)

Target Missed

Approximation Level 4

Branch Distance =

-Abs(b – (a+c))

Computer Science & Information Technology (CS & IT) 447

The approximation Level is a count of the number of predicate nodes in the shortest path from the

first predicate node in the flow graph to the predicate node with the critical branch- a branchthat

leads the target to be missed in a path through the program -as shown in Figure 3.

The Normalized Branch Distance is computed according to the formula

Normalized Branch Distance = (1/ (1.001
distance

))

where, distance, or branch distance, as defined in [20, 22], is computed at the node with the

critical branch using the values of the variables or constants involved in the predicates used in the

conditions of the branching statement.

Table 1 summarizes the computation of distance.

Entries one through five are the same as in [19]. Table 1 also describes the computation of

distance in the presence of logical operators AND (&&) and OR (||). In both these cases, the

definition takes into account that branch distance is to be minimized whereas the fitness is to be

maximized.

In general, in order to generate test data to satisfy the branch coverage criterion using a genetic

algorithm, the sequence in which the branches will be selected for coverage must be defined. A

chosen branch may become difficult to cover if the corresponding branch predicate is not reached

by any of the test data or individuals in the current population. One of the proposals made by

Pachauri and Gursaran [23] for sequencing is the path prefix strategy. We adopt this strategy for

the experiments described in this paper. Further, each time a branch is traversed for the first time,

it may be necessary to store the test data that traverse the branch and inject these into the

population when the sibling branch is selected for traversal. This is referred to as memory and is

used in this paper. In order to ensure that individuals reaching the sibling branch of the target are

not destroyed by the genetic algorithm operators, elitism is adopted. Up to 10% of fit individuals,

with a minimum of one individual, are carried forward to the next generation.Furthermore, it is

also possible to initialize the population each time a new branch is selected for coverage or leave

it uninitialized. In the experiments described in this paper, the population is not initialized.

Infeasibility may prevent test data from being generated to satisfy C. It may be dealt with as

follows. If the search is attempting to traverse a particular branch, but is unable to do so over a

sufficiently large, predetermined, number of iterations, then the search run is aborted and the

Table 1.Branch distance

computation.

 Decision

Type

Branch

Distance

1 a < b a – b

2 a <= b a – b

3 a > b b – a

4 a >= b b – a

5 a == b Abs(a – b)

6 a != b Abs(a – b)

7 a && b a + b

8 a || b min(a , b)

448 Computer Science & Information Technology (CS & IT)

branch is manually examined for infeasibility. If the branch is found to be infeasible then it is

marked as traversed and the search is rerun.

4. EXPERIMENTAL SETUP

In this section we describe the various experiments carried out to test the performance of test data

generation with genetic algorithm.

4.1 Benchmark Programs

Benchmark programs chosen for the experiments have been taken from[11,24]. These programs

have a number of features such as real inputs, equality conditions with the AND operator and

deeply nested predicates that make them suitable for testing different approaches for test data

generation.

• Line in a Rectangle Problem: This program takes eight real inputs, four of which

represent the coordinates of rectangle and other four represents the coordinates of

the line. The program determines the position of the line with respect to the

position of rectangle and generates one out of four possible outputs:

A. The line is completely inside the rectangle;

B. The line is completely outside the rectangle;

C. The line is partially covered by the rectangle; and

D. Error: The input values do not define a line and/or a rectangle.

The maximum nesting level is 12. In total this program’s CFG has 54 nodes and

18 predicate nodes.

• Number of Days between Two Dates Problem: This program calculates the days between

two given dates of the current century. It takes six integer inputs- three of which represent

the first date (day, month, and year) and other three represents the second date (day,

month, and year). The CFG has 43 predicate nodes and 127 nodes

• Calday: This routine returns the Julian day number. There are three integer input to the

program. First input represent month, second represent day and the third represent the

year. It's CFG has 27 Nodes with 11 predicate nodes. It has equality conditions,

remainder operator. The maximum nesting level is 8.

• Complex Branch:It accepts 6 short integer inputs. In this routine there are some complex

predicate conditions with relational operators combined with complex AND and OR

conditions, it also contains while loops and SWITCH-CASE statement. Its CFG contains

30 nodes

• Meyer’s Triangle Classifier Problem: This program classifies a triangle on the basis of its

input sides as non triangle or a triangle, i.e., isosceles, equilateral or scalene. It takes three

real inputs all of which represent the sides of the triangle. It's CFG has 14 Nodes with 6

predicate nodes. The maximum nesting level is 5. It has equality conditions with AND

operator, which make the branches difficult to cover.

• Sthamer’s Triangle Classifier Problem: This program also classifies a triangle on the

basis of its input sides as non triangle or a triangle that is isosceles, equilateral, right

angle triangle or scalene. It takes three real inputs; all of them represent the sides of the

triangle but with different predicate conditions. It's CFG has 29 Nodes with 13 predicate

Computer Science & Information Technology (CS & IT) 449

nodes. The maximum nesting level is 12. It has equality conditions with AND operator

and complex relational operators.

• Wegener’sTriangle Classifier Problem: This program also classifies a triangle on the

basis of its input sides as non triangle or a triangle that is isosceles, equilateral,

orthogonal or obtuse angle. It takes three real inputs; all of them represent the sides of the

triangle but with different predicate conditions. It's CFG has 32 Nodes with 13 predicate

nodes. The maximum nesting level is 9.

• Michael’s Triangle Classifier Problem: This program also classifies a triangle on the

basis of its input sides as non triangle or a triangle that is isosceles, equilateral or scalene.

It takes three real inputs; all of them represent the sides of the triangle but with different

predicate conditions. It's CFG has 26 Nodes with 11 predicate nodes. The maximum

nesting level is 6.

4.2 GA Operator and Parameter Settings

Table 2 lists the various operator and parameter settings for the genetic algorithm used in this

study.

Table 2.Operator and Parameter Settings

 Parameter/ Operator Value

1 Population Size 6, 10, 16, 20, 26, …, 110.

2 Crossover type Two point crossover

3 Crossover Probability 1.0

4 Mutation Probability 0.01

5 Selection Method Binary tournament

6 Branch Ordering Scheme Path Prefix Strategy

7 Fitness Function As described in Section 3.

8 Population Initialization Initialize once at the beginning of the GA run

9 Population Replacement Strategy Elitism with upto 10% carry forward

10 Maximum Number of Generations 10
7

11 Memory Yes

5. RESULTS

For each population size, hundred experiments were carried out and the following statistics were

collected:

• Mean number of generations. It may be noted that the termination criterion for each

experiment is either full branch coverage or 107 generations whichever occurs earlier.

The number of generations to termination over hundred experiments is used to compute

the mean. The mean does not tell us if all the branches were covered.

• Mean percentage coverage achieved.

Additionally ANOVA was carried out using SYSTAT 9.0 to determine significant difference in

means.

450 Computer Science & Information Technology (CS & IT)

In all the experiments full (100%) coverage was achieved for all population sizes, for all

benchmark programs and for both maximization and minimization approaches. This implies that

the differentiating factor would have to be the difference in the mean number of generaitons.

Figure 4 and Figure 5 plot the mean number of generations for both the maximization and

minimization approach. Table 3 summarizes the results of ANOVA with F and p values.

Considering a significance level of 0.05, it can be seen that the difference for all the benchmark

programs is not significant except for some isolated cases which are not generalizable.

Further analysis in our case shows that with the path prefix strategy and memory, individuals are

present in each generation that cause a traversal of the sibling branch of the target. This coupled

with elitism may actually speed up the test data discovery process. It may be interesting to check

if in the absence of a branch ordering strategy, memory and elitism, is the performance of the two

approaches is comparable.

 Figure 4 Plots of Mean Number of Generations for some Benchmark Programs

Computer Science & Information Technology (CS & IT) 451

Figure 5 Plots of Mean Number of Generations for some Benchmark Programs

452 Computer Science & Information Technology (CS & IT)

Table 3Results of test of ANOVA

6. CONCLUSION

In search based test data generation, the problem of test data generation is reduced to that of

function minimization or maximization. Traditionally, for branch testing, the problem of test data

generation has been formulated as a minimization problem. In this paper we have defined an

alternate maximization formulation and experimentally compared it with the minimization

formulation. We have used a genetic algorithm as the search technique and in addition to the

usual genetic algorithm operators we have also employed the path prefix strategy as a branch

ordering strategy and memory and elitism. Results indicate that there is no significant difference

in the performance or the coverage obtained through the two approaches and either could be used

in test data generation if coupled with the path prefix strategy, memory and elitism.

Computer Science & Information Technology (CS & IT) 453

It may be interesting to check if in the absence of a branch ordering strategy, memory and elitism,

is the performance of the two approaches is comparable.

ACKNOWLEDGEMENTS

This work was supported by the UGC Major Project Grant F.No.36-70/2008 (SR) for which the

authors are thankful.

REFERENCES

[1] M. Harman & B. Jones, (2001), “Search Based Software Engineering”, Journal of Information and

Software Technology, vol. 43, No. 14,pp833-839.

[2] P. McMinn, (2004), “Search-Based Software Test Data Generation: A Survey,” Software Testing,

Verification and Reliability, vol. 14, No.2, pp105-156.

[3] M. Harman, A. Mansouri, and Y. Zhang, (2009),”Search based software engineering: A

comprehensive analysis and review of trends techniques and applications”, Technical Report TR-09-

03, Department of Computer Science, King's College London.

[4] M. Harman and A. Mansouri, (2010),"Search Based Software Engineering: Introduction to the

Special Issue of the IEEE Transactions on Software Engineering,"IEEE Transactions onSoftware

Engineering, vol.36, No.6, pp737-741.

[5] S. Ali, L.C. Briand, H. Hemmati, R.K. Panesar-Walawege, (2010), "A Systematic Review of the

Application and Empirical Investigation of Search-Based Test Case Generation",IEEE Transactions

onSoftware Engineering, vol.36, No.6, pp742-762.

[6] M. Harman and P. McMinn, (2010), "A Theoretical and Empirical Study of Search-Based Testing:

Local, Global, and Hybrid Search",IEEE Transactions onSoftware Engineering, vol.36, No.2, pp226-

247.

[7] H. Zhu, A. V. PatrickHall, and H. R. John, (1997), “Software Unit Test Coverage and

Adequacy”,ACM Computing Surveys, vol. 29, No. 4, pp366–427.

[8] M. Harman, L. Hu, R.M. Hierons, C. Fox, S. Danicic, A. Baresel, H. Sthamer, and J. Wegener,

(2002). “Evolutionary Testing Supported by Slicing and Transformation”, In Proceedings of IEEE

International Conference on Software Maintenance, Montreal, Canada (ICSM ’02), pp 285–285.

[9] C. Michael, G. McGraw and M. Schatz, (2001), “Generating Software Test Data by Evolution”,IEEE

Transaction on Software Engineering, vol. 27, pp1085-1110.

[10] K. Agarwal and Gursaran, (2010), “Towards software test data generation using discrete quantum

particle swarm optimization. In Proceedings of the 3rd India software engineering conference (ISEC

'10). ACM, New York, NY, USA, pp65-68.

[11] R. Blanco, J. Tuya and B. Adenso-Díaz. (2009). “Automated test data generation using a scatter

search approach” Inf.Softw. Technol. Vol. 51, No. 4, pp.708-720.

[12] B.F. Jones, D. Eyres, and H. Sthamer, (1998), “A Strategy for using Genetic Algorithms to Automate

Branch and Fault-based Testing”,Computer Journal, vol. 41,No. 2, pp98–107.

[13] J. Wegener, A. Baresel and H. Sthamer (2001), “Evolutionary Test Environment for Automatic

Structural Testing”,Information and Software Technology Special Issue on Software Engineering

using Metaheuristic Innovative Algorithms, vol. 43,No. 14, pp841–854.

454 Computer Science & Information Technology (CS & IT)

[14] E. D´ıaz, J. Tuya and R. Blanco (2003), “Automated Software Testing using a Metaheuristic

Technique based on Tabu Search”. In Proceedings of the 18th IEEE International Conference on

Automated Software Engineering (ASE ’03), Montreal, Canada, pp310–313.

[15] P. McMinn, D. Binkley and M. Harman, (2009), “Empirical evaluation of a nesting testability

transformation for evolutionary testing”, ACM Trans. Softw. Engg. Methodol. Vol. 18, No. 3.

[16] M. Harman, (2008), “Testability Transformation for Search-Based Testing”, In Keynote of the 1st

International Workshop on Search-Based Software Testing (SBST) in conjunction with ICST 2008,

Lillehammer, Norway.

[17] M.A. Ahmed and I. Hermadi (2008), “GA-based Multiple Paths Test Data Generator”, Computers &

Operations Research, vol. 35, No. 10, pp3107–3124.

[18] Y. Chen, Y. Zhong, T. Shi, and J. Liu (2009), “Comparison of Two Fitness Functions for GA-Based

Path-Oriented Test Data Generation”, In Proceedings of the 2009 Fifth International Conference on

Natural Computation (ICNC '09), IEEE Computer Society, Washington, DC, USA, Vol. 4, pp177-

181.

[19] B. Korel, B. (1990),“Automated Software Test Data Generation”. In Transactions on Software

Engineering, SE vol. 16, No. 8, pp870–879.

[20] A. Baresel, H. Sthamer and M. Schmidt. (2002), “Fitness Function Design to Improve Evolutionary

Structural Testing”, Inproceedings of the 2002 Conference on Genetic and Evolutionary Computation

(GECCO ’02), New York, USA, pp1329–1336.

[21] D.E. Goldberg, (1989), Genetic Algorithms in search optimization & machine learning, Pearson

Education Asia.

[22] P. McMinn and M. Holcombe, (2006), “Evolutionary Testing Using an Extended Chaining

Approach”,Evolutionary Computation, vol.14, No.1, pp. 41-64.

[23] A. Pachauri and Gursaran, (2011), “Software Test Data Generation using Path Prefix Strategy and

Genetic Algorithm”, In Proc. Of the International Conference on Science and Engineering (ICSE

2011),ISBN: 978-981-08-7931-0, pp131-140. Available on

http://rgconferences.com/proceed/icse11/pdf/152.pdf

[24] E. D´ıaz, J. Tuya and R. Blanco and J. J. Dolado (2008), “A Tabu Search Algorithm for Structural

Software Testing”, Computers & Operations Research, vol. 35, No. 10, pp3052–3072.

