
David C. Wyld et al. (Eds): AI, AIMLNET, BIOS, BINLP, CSTY, MaVaS, SIGI - 2022

pp. 251-258, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.121822

AN AUTOMATIC SHEET MUSIC GENERATING

ALGORITHM BASED ON MACHINE LEARNING

AND ARTIFICIAL INTELLIGENCE

Ruize Yu1 and Yu Sun2

1Santa Margarita Catholic High School,

22062 Antonio Pkwy, Rancho Santa Margarita, CA 92688
2California State Polytechnic University, Pomona,

CA, 91768, Irvine, CA 92620

ABSTRACT

Due to the ever growing popularity of music as a part of everyday life, and with the continuous

advances in AI technology, it is now possible for computers to listen to and recognize music

[1]. However, there still exist limitations on machines’ ability to recognize audio. This paper

proposes an application to simplify the process of music transcription and reduce its runtime

[2]. This application was tested in a different range of settings and evaluated. The results show

what can be further improved on this application.

KEYWORDS

MIDI, Pitch Recognition, Magenta.

1. INTRODUCTION

The human ear is able to detect a range of frequencies, allowing it to “register” different sounds

upon hearing it. Due to ever-advancing technology, it is no surprise that researchers will

eventually create pitch detection algorithms that capture sounds and send the information to the

algorithm [4]. Ever since pitch detection algorithms have been introduced, people have found

creative ways to utilize such algorithms to solve various problems that may present themselves

[5]. One of such problems is recognizing the various pitches of a music file, and writing them in a

sheet music format. This has always been done with human hearing, thus increasing the room for

error if the said person does not have a perfect pitch. Thankfully, researchers have looked into

this problem and have created pitch detection algorithms described earlier to deal with problems

like such.

Similar programs have already been created to help the user convert a raw music file into MIDI,

many of which exist as online conversion tools [6]. An implementation of such programs is

Ableton, which comes with many additional settings on top of converting music to MIDI.

However, if a user wishes to write the said file into sheet music, they have to go through various

processes until they can reach the final result. Another problem that arises with the process is that

the MIDI file might take extra space, making it very inefficient if the user only wants to convert

the raw audio into a piece of sheet music. Most of the existing programs lack a comprehensive

workflow that allows the user to complete the entire process without interruptions.

http://airccse.org/cscp.html
http://airccse.org/csit/V12N18.html
https://doi.org/10.5121/csit.2022.121822

252 Computer Science & Information Technology (CS & IT)

In this paper, the method used is very similar to other music-to-MIDI programs. However, our

method includes converting the MIDI file to sheet music and writing it as an image for the user.

The goal of this method is to attempt to create an algorithm that writes an audio file into sheet

music and reduces the number of steps needed to do so. Some of the features included in this

algorithm are connected together to provide a satisfactory result. First, the audio is converted

from a .wav file into a .midi file, the MIDI file is manipulated by Mido [7]. Magenta and

TensorFlow AI provides the conversion needed from raw audio to MIDI. Second, the MIDI file is

converted into sheet music, this step requires the use of Music21, which provides all the

components needed for a piece of sheet music, such as the tempo, time signature, measures, and

such. The third feature of this algorithm is the storage of the converted sheet music, which uses

Google Firebase to store the said sheet music, which is an image at the current stage. This image

is then sent to the website, which is created using both ngrok and flask.

To demonstrate how the above techniques reduce steps taken to convert audio to sheet music, and

how the program is accurate, there will be two different approaches taken. The first approach

tests each individual process using google colab [8]. The program is separated into three distinct

steps. The first step transcribes a raw audio file into a MIDI file, the second step converts the

MIDI file into sheet music, and the last step opens up a webpage that displays the converted sheet

music. As shown in a later experiment, the three steps require building up off of each stage to

provide the final result. The second approach is through repl.it, and tests the program from end-

to-end. This is done to show how the program functions without the need to go through

individual steps.

The rest of the paper is organized as follows: Section 2 provides the details on the challenges

faced during the experiment and designing stages; Section 3 focuses on the details of the

solutions corresponding to the challenges in Section 2; Section 4 presents the details about the

experiments done, following by presenting the related work in Section 5; Section 6 will show the

concluding remarks, as well as the future work of this project.

2. CHALLENGES

In order to build the project, a few challenges have been identified as follows.

2.1. Identifying the Pitches

The first challenge that presented itself is identifying the different pitches within a raw audio file.

Since the computer reads in pitches and processes it in a different way than the human ear, it

needs to first know which pitch matches which music note. Additionally, it needs to be able to

recognize the length of each pitch and record it inside the MIDI file. The second part of this

challenge is writing into a MIDI file, which requires an algorithm and tuning [9]. The program

cannot proceed without an accurate MIDI file, which will then be converted into a music sheet.

2.2. Recognizable Sheet Music

Another problem that came up was ensuring that the MIDI conversion writes an accurate and

readable sheet music for the reader. Because music sheets have different clefs and such, the

program needs to convert notes to their respective clef and will need to transcribe the notes

depending on the clef. Another problem within this situation is writing in a different tempo and

music notes, such as eighth notes, or the common quarter notes. The program needs to

differentiate between when to use different notes and when to just change the tempo to make the

sheet easier to read.

Computer Science & Information Technology (CS & IT) 253

2.3. Creating the Website

After finishing the algorithm for the conversion, a website needs to be made. While a website is

not very hard to create, the problem resides in connecting the algorithm, which uses google

firebase, with the website itself.

3. SOLUTION

Figure 1. An overview of the components and process of this program

First, this process requires the user to upload a raw audio file in the form of .wav. This audio file

is received by Magenta, a machine learning library focused and trained on music provided by

Google, as an input to convert to MIDI [3]. Magenta will then use its Onset and Frames feature to

convert the file to MIDI and will return it as an output. Then, the output will be received by

Music21, a python-based toolkit for musicology. Music21 will primarily be used to write the

MIDI file to sheet music in this process [15]. After Music21 finishes running, the output will be

returned as a png image of the sheet music. This file will then be returned to the website, hosted

by flask and ngrok, which will display the finished image to the user. The file will also be

uploaded to Firestore, a cloud storage location.

Figure 2. Select file screen

The website first instructs the user to upload a file and press submit.

Using python, the music to sheet conversion is done with the help of Magenta, specifically, the

use of its onset and frames function.

https://app.diagrams.net/?page-id=C5RBs43oDa-KdzZeNtuy&scale=auto#G1S451tp2V4JMjg3BVQogsqpRhyqyosmqy

254 Computer Science & Information Technology (CS & IT)

Figure 3. The Screenshot of code 1

The command_line provides the necessary program configuration, with the audio file as the

target. This method returns the transcribed audio file as a MIDI file, which is then used to convert

to sheet music. To convert MIDI to sheet music, the program uses Music21 to parse the MIDI file

(shown below as midi_path) to parse it into a music21 object.

Figure 4. Screenshot of code 2

The annotated object is then used as a parameter for the generate_sheet_music function, which

will use it to return a png file of the sheet music.

Figure 5. Screenshot of code 3

The program uses music21’s .write function to write the object into a png file, which is then

returned after being stored in the firestore.

Figure 6. Final image

The png file is then displayed on the website that originally prompted the user to input a .wav

file.

Computer Science & Information Technology (CS & IT) 255

4. EXPERIMENT

4.1. Experiment 1: Individual Steps via Google Colab

In this experiment, we tested and timed each function of the program bit-by-bit. This is to find

where the algorithm takes the most time to execute, and where the bottleneck occurs.

To proceed with the experiment, each code block is run individually using Google Colab, and

their runtime and memory usage are all recorded with %%timeit, %%prun, and %%memit.

4.2. Experiment 2: Complete Process Using the Flask Website

Have multiple testing data be uploaded to the website and be converted to sheet music check for

errors, inaccuracies, and see what can be improved. The result will be collected and will provide

feedback on the accuracy of the algorithm. This experiment will provide us with data on how to

improve the algorithm, and where the errors are occurring.

To test the accuracy of the converter, three different wav files of C major notes were created

using MuseScore. The three different data were uploaded to the website, where it is then

converted back to sheet music. The first wav file is a C Major scale played on a piano in common

time. The second file is a scale of C Major triads, played on a piano in common time and in

ascending scale. The last file is a variation of the first file but split up with a quarter rest between

the notes.

After creating the sample data and running them through the algorithm, it appears that the general

shape and notes of the audio file are preserved. However, there are cases where the converter

showed inaccuracies. For example, in the test case where chords are uploaded to the website

(Figure 2), the only inaccuracy shown is in the first chord, where the algorithm missed concert

C4 (Figure 2b). Another example is Figure 1b, where the C Major ascending & descending scales

showed that some notes are carrying on the next beat. When separated (Figure 3), the algorithm

works fine again.

Figure 7. Original Version (Figure 1a)

Figure 8. Magenta Version (Figure 1b)

Figure 9. Original Version (Figure 2a)

256 Computer Science & Information Technology (CS & IT)

Figure 10. Magenta Version (Figure 2b)

Figure 11. Original Version (Figure 3a)

Figure 12. Magenta Version (Figure 3b)

Figure 13. Chart graph

For the generateMidi function, a lot of time was taken up because the function was executing the

return string from the command line. However, it was unnecessary for the program as it did not

read the output. By removing the .read function, the runtime was reduced from around 25

seconds to 0.019 seconds.

For the midi to sheet music conversion, there is no need for optimization, as the entire method

only took 0.449 seconds to execute around 68k function calls, with the most time taken being

around 0.11 seconds for a single call.

5. RELATED WORK

Aitan Gossman and Josh Gossman, in their research Automatic Music Transcription: Generating

MIDI From Audio, propose an approach that utilizes deep learning’s superior learning ability to

learn structures within images, and uses this ability to convert audio into MIDI [11]. As the two

authors stated, they hope to achieve a similar network as Magenta, and ideally provide similar

results. The result of their experiment proved it to be better than Google’s Project Magenta,

Computer Science & Information Technology (CS & IT) 257

reaching a F1 score of 0.95 compared to Magenta’s F1 score of 0.9. Their AMT design proved to

be better than Magenta, achieved through their neural network design and training of data. This

AMT tool will have an edge over other music transcription algorithms due to it using a different

deep learning API trained by themselves.

Mingheng Liang, in his research Music Score Recognition and Composition Application Based

on Deep Learning, presents a deep-learning based music score recognition model [12]. The said

model employs a deep network, accepts the entire score image as input, and outputs the note's

time value and pitch directly. The work in question is almost the opposite of the algorithm

described in our work; instead of accepting and reading an audio file as an input, Liang’s work

processes a musical score image and transcribes it into notes to be played.

In the work Magenta Studio: Augmenting Creativity with Deep Learning in Ableton Live by

researchers from Google and the University of California, Berkeley, a design of a music

generation application is provided, as well as its implementation as a plugin for the audio

workstation Ableton Live [13]. The authors provided a flowchart of their application, which

shows that the API references Magenta; the same library that the algorithm in this paper uses.

However, the major difference between the two works is that Magenta Studio features multiple

different plug-ins in addition to music generation, while this algorithm only focuses on the

conversion of audio files to sheet music.

6. CONCLUSION

In this paper, we proposed a method that combines the steps of converting audio to MIDI,

converting MIDI to sheet music, and uploading the sheet music to a website, into one algorithm.

To test this algorithm’s efficiency and accuracy, two different experiments were conducted, one

tests the runtime and memory usage, while the other one tests the accuracy of the application. In

the first experiment, each stage of the music transcription algorithm was timed during its runtime

and recorded. In the second experiment, three different piano audio files were prepared using

MuseScore 3, and the accuracy of this algorithm is tested by running it on all three audio files and

comparing the result with the original music sheet [14]. The first experiment showed that the

average run time is prolonged due to an unnecessary line during testing, which was eventually

removed to reduce the run time. The second experiment showed Magenta’s limitations on music

transcription.

Currently, this system’s accuracy is limited by using Google’s Project Magenta [10]. Although

accurate, it only achieves an F1 score of 0.9, which shows that it is still prone to external noises

such as lingering notes and audio. This will only worsen when this application is used to

transcribe any complex composition. During testing, it is also shown that there are no current

ways to make adjustments midway, as the transcription is done from end-to-end.

These limitations will be solved if the future implementation of this program allows for access to

the algorithm in between steps to adjust for error, as well as possibly training a deep learning

network similar to Gossman’s AMT system in work 1.

REFERENCES

[1] Extance, Andy. "How AI technology can tame the scientific literature." Nature 561.7722 (2018): 273-

275.

[2] Benetos, Emmanouil, et al. "Automatic music transcription: An overview." IEEE Signal Processing

Magazine 36.1 (2018): 20-30.

258 Computer Science & Information Technology (CS & IT)

[3] Benetos, Emmanouil, et al. "Automatic music transcription: challenges and future directions." Journal

of Intelligent Information Systems 41.3 (2013): 407-434.

[4] Rabiner, Lawrence, et al. "A comparative performance study of several pitch detection algorithms."

IEEE Transactions on Acoustics, Speech, and Signal Processing 24.5 (1976): 399-418.

[5] Luengo, Iker, et al. "Evaluation of pitch detection algorithms under real conditions." 2007 IEEE

International Conference on Acoustics, Speech and Signal Processing-ICASSP'07. Vol. 4. IEEE,

2007.

[6] Loy, Gareth. "Musicians make a standard: the MIDI phenomenon." Computer Music Journal 9.4

(1985): 8-26.

[7] Snyder, David, Guoguo Chen, and Daniel Povey. "Musan: A music, speech, and noise corpus." arXiv

preprint arXiv:1510.08484 (2015).

[8] Alves, Francisco Regis Vieira, and Renata Passos Machado Vieira. "The Newton fractal’s Leonardo

sequence study with the Google Colab." International Electronic Journal of Mathematics Education

15.2 (2019): em0575.

[9] Yamamoto, Kotaro, and Munetoshi Iwakiri. "A standard MIDI file steganography based on

fluctuation of duration." 2009 International conference on availability, reliability and security. IEEE,

2009.

[10] Roberts, Adam, et al. "Magenta studio: Augmenting creativity with deep learning in ableton live."

(2019).

[11] Grossman, Aitan, and Josh Grossman. "Automatic Music Transcription: Generating MIDI From

Audio." (2020).

[12] Byrski, Aleksander, and Marek Kisiel-Dorohinicki. Evolutionary Multi-Agent Systems: from

inspirations to applications. Vol. 680. Springer, 2016.

[13] Roberts, Adam, et al. "Magenta studio: Augmenting creativity with deep learning in ableton live."

(2019).

[14] Todea, Diana. "The Use of the MuseScore Software in Musical E-Learning." Virtual Learn (2015):

88.

[15] Cuthbert, Michael Scott, and Christopher Ariza. "music21: A toolkit for computer-aided musicology

and symbolic music data." (2010).

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Keywords

