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Abstract. Given a text stream, we associate a stream of edges in a graph G and study its
large clusters by analysing the giant components of random subgraphs, obtained by sampling
some edges with different distributions. For a stream of Tweets, we show that the large giant
components of uniform sampled edges of the Twitter graph reflect the large clusters of G.
For a stream of text, the uniform sampling is inefficient but the weighted sampling where
the weight is proportional to the Word2vec similarity provides good results. Nodes of high
degree of the giant components define the central words and central sentences of the text.
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1 Introduction

We observe streams of high volume of incoming text and study the classification and the
sentiment analysis online, without storing the entire data. We consider messages generated
by social network or by text servers. Twitter, for example, generates streams of tweets
which are transformed into streams of graph edges where the nodes are the tags and edges
link the author of the tweet with the tags present in the text. Text servers generate text
sentences which are transformed into graph edges where the nodes are the words and the
edges link two words of the same sentence.

We study the large clusters of these graphs in sliding windows by sampling a fixed
number of edges with two different distributions, the uniform distribution or a weighted
distribution. The analysis is based on the study of the giant components of these random
subgraphs.

For Twitter applications, we typically receive 103 tweets per minute, approximately
3.103 edges per minute. We analyse random subgraphs online in sliding windows of length
τ = 10 minutes. We sample the edges uniformly for each sliding window using a Reservoir
sampling [23], and analyse the giant components of the Reservoir of constant size K. We
only keep the giant components of each window. We interpret the giant components as
topics and follow the various topics in time. We can also correlate different streams, based
on the comparison of their giant components.

For text applications, an RSS-stream of news articles may generate a large stream of
sentences. The nodes of the generated graph are the words and an edge is a pair of words
in the same sentence. If we sample uniformly the edges, the giant components are however
not stable. We observed that if we sample the edges proportionally to the similarity of
the words, given by Word2vec [14], the giant components become stable. We use the
classical k-means algorithm to classify the text, with the Jaccard distance between giant
components. Our main contributions are:

– an analysis of streaming texts by giant components of random graphs: the uniform
sampling is efficient for Social media such as Twitter, whereas the weighted sampling
where the weight is the Word2vec similarity between words is efficient for streaming
texts,

– a classification technique, based on a natural distance between components, useful for
topicalization and an analysis of the nodes of high degree of the giant components
which define the central words and central sentences of the text.
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– the definition of a sentiment index associated with a text within a text reference L,
the basis for a sentiment analysis.

In section 2, we introduce the main concepts. In section 3 we define the giant com-
ponents in random graphs and the sampling methods. In section 4, we define a distance
between giant components and use the k-means for classification. In section 5, we describe
how detect offensive messages which have a high impact. In section 6, we describe experi-
ments for analysing Twitter streams and for classifying and analysing standard texts.

2 Preliminaries

We first review Streaming algorithms, Social Networks and some of the classical statistical
methods used in Natural language processing.

2.1 Streaming algorithms

These algorithms read data step by step and maintain a small memory, if possible constant,
poly(log) or at least sublinear in the size of the stream. Classical algorithms may consider
a stream of numerical values xi ∈ {1, 2, ...n}, of words on an alphabet Σ, or of edges
ei = (vj , vk) of a graph G = (V,E) where vj , vk ∈ V .

An important technique called the Reservoir sampling [23] keeps K elements of the
stream with a uniform distribution. In a stream of length m each element has probability
K/m to be chosen in the Reservoir. The weighted Reservoir sampling keeps K elements
of the stream with a weighted distribution, detailed in the appendix C. Each element ei of
weight wi of the stream has probability K ·wi/

∑
iwi to be chosen in the Reservoir. If K

is sublinear, for example O(
√
m), we obtain a sublinear space algorithm.

2.2 Social Networks

In social networks and crowdsourcing we observe large streams of data online, mostly edges
e1, ..., em of a graph. Given a set of tags such as {#Ethereum, #Bitcoin}, or {#Amazon},
Twitter provides a stream of tweets represented as Json trees whose content C (the text
of the tweet) contains at least one of these tags. The Twitter Graph of the stream is the
graph G = (V,E) with multiple edges E where V is the set of tags #x or @y and for each
tweet sent by @y which contains tags #x ,@z we add the edges (@y,#x) and (@y,@z) in
E. In our approach, we consider the hypergraph where we add the content C to each edge.
We have then the hyperedges (@y,#x,C) and (@y,@z, C). The URL’s which appear in
the tweet can also be considered as nodes but we ignore them for simplicity. A stream of
tweets is then transformed into a stream of edges e1, ......em, ...., although each edge is an
hyperedge, which also stores a timestamp.

Social networks such as Twitter evolve dynamically, and dense subgraphs appear and
disappear over time as interest in particular events grows and disappears.

2.3 Large dense subgraphs

There are several appoaches to density in graphs with n nodes and m edges, described in
the Appendix A. We are mainly interested in large clusters S and assume that |S| > δ

√
n

for some parameter δ. The (γ, δ)-large dense subgraph problem, where γ ≤ 1, takes as input
a graph G = (V,E) and decides whether there exists an induced subgraph S ⊆ V such
that |S| > δ

√
n and |E[S]| > γ|S|(|S| − 1)/2. Social graphs defined by a stream of edges
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Fig. 1. Twitter graph for a tweet and a retweet

e1, ..., em, ... follow a specific regime for which a Reservoir of the size K = O(
√
n. log n)

can detect (γ, δ)-large dense subgraphs with high probability [21]. Appendix A details this
approach.

2.4 Analysis of Natural languages

Classification methods in Natural Languages also consider the analysis of clusters. The
IRaMuTeQ [20] method enables hierarchical classifications based on PCA (Principle Com-
ponents Analysis). The Word2vec method [14] associates with the words, vectors of v small
dimension. Other embeddings [10, 19] are also possible. Extensions to sentences are con-
sidered in Word2Sense [18].

The LDA(k) (Latent Dirichlet Allocation) [4] is a probabilistic method to analyse the
matrix A where the lines are the documents and the columns are the principal words,
and the value A(i, j) is the number of occurrences of the word j in the document i. It
constructs k classes among n documents. LDA, Dynamic Topic Models [5] and IRaMuTeQ
techniques require to access the entire data.

Attention mechanisms [11, 22] provide, for a word wi in a sentence, the distribution of
the other most correlated words. The correlation of a word wj with wi is approximately
the value v(wi).v(wj). We can then compute {v(wi).v(wj) : j 6= i} for a fixed wi and
normalize the values to obtain a distribution. It is mostly used in Transformers for machine
translation. We show that the weighted Reservoir can reconstruct the most significant
attention distributions.

3 Giant components in dynamic graphs

A giant component is a large connected components in a random graph. For the uniform
sampling, the probability that an edge is selected is K/m, i.e. uniform for each edge.
It follows the Erdös-Renyi model [9] for which the analysis of giant components is well
understood.

A social graph follows a power law degree distribution and can be generated by the
configuration model, see section B of the appendix. The existence of giant components is
studied in [15].

Our model takes a social graph which follows a power law degree distribution, and
sample it uniformly. It is a combination of the configuration model and the Erdös-Renyi
model. The analysis for the existence of giant components is given in the section B of the
appendix.
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For each large connected component C, we approximate a cluster by 2-core(C), defined
in the appendix B. The component C alone may not be a good approximation of the cluster.
We then store these simplified components for different windows.

3.1 Stability

We can experimentally verify the existence of the giant components by performing inde-
pendent experiments and measuring the stability. Consider two experiments on the same
stream (or document D) with two independent Reservoirs. Let V1 (resp. V2) be the set
of vertices of the giant component C1 (resp. V2). Let the stability of the stream D and
Reservoir size K, be the random variable ρ(D, k) defined as:

ρ(D, k) =
|V1 ∩ V2|
|V1|

The random variable depends on two experiments and we can also take its expectation
IE(ρ(D, k)) for n experiments. For Twitter streams, the uniform sampling provides a good
stability, as suggested by the theoretical analysis of giant components. On the contrary,
for texts the stability of the uniform sampling is close to 0.

4 Classification

There are several possible distances between giant components which can be generalized to
sets of giant components. For simplicity, we first use the Jaccard distance distJ(C1, C2) =
1 − J(V1, V2) where J(V1, V2)

1 is the Jaccard similarity between the domains V1 and V2.
Other distances such as the Edit distance would take edges into account.

A sequence of sliding windows generates the giant components C1, .....Cn with the
distances between pairs. We can group them in k-classes, with the classical k-means algo-
rithm. Each class i has a representative Ci. For a new giant component C, we just check
the Mini dist(Ci, C) to classify C. The classification can be extended to sliding windows
if we consider sets of giant components.

5 Measures of sentiments

The classical Word2Vec analysis takes texts L as inputs and construct vectors v of small
dimension such that for two words wi, wj of the texts, the relative frequency of wi, wj in
a sentence is proportional to the scalar vt(wi).v(wj). We take Twitter messages [24] as a
benchmark and observe streams of Tweets, which are transformed in streams of edges of
a Twitter graph. We sample edges uniformy in a Reservoir of size k, or with a weighted
distribution which depends on the vectors v. The Reservoir is random graph which contains
giant components. The edges of the nodes of high degree of the giant components define
the tweets ti of High Impact.

For the text analysis we take the tweets ti and compute the weight ρ(ti, L) for a
reference L, defined as follows:

ρ(ti, L) =
∑

(wj ,wk)∈ti

vt(wj).v(wk)

We interpret (wj , wk) ∈ ti, as the pair of words wj , wk appears in the same sentence
of the tweet ti. For a natural language such as English, L is the basic text reference, for

1 The Jaccard similarity or Index between two sets A and B is J(A,B) = |A ∩B|/|A ∪B|.
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example Wikipedia, and v′s are the associated vectors. We then construct a list Lo of
offensive texts, which we want to detect and construct the associated vectors vo. If only
a few examples are available, we only modify the vectors v′s associated with the offensive
words, and use the same vector v′s for the standard words.

These vectors can be very different from the v′s. We then compare ρ(ti, L) and ρ(ti, Lo).
A tweet ti is abusive if ρ(ti, Lo) > c ·ρ(ti, L) for some constant c.This approach generalizes
to different natural languages Li and various offensive texts Lo,i.

5.1 The detection of offensive High-Impact tweets

A High-Impact tweet is associated with an edge connected to a node of high degree. In
Figure 2, the node 1 is of high degree and the edges e1, e4, e5, e8 correspond to High-Impact
tweets.

Consider the Twitter stream associated with the tag #Metoo. A High Impact tweet
is ti: @robinmonotti2: Forced or coerced vaccination is medical rape: a crime. We need a
medical #MeToo movement now. There are 7 words (@robinmonotti2, Forced, coerced,
vaccination, medical, rape, crime) in the first sentence hence 42 =

(
7
2

)
pairs. In the second

sentence, there are 5 words hence 10 pairs. In this case, ρ(ti, Lo) = 0.18 and ρ(ti, L = 0.78),
using the publicly available datasets that cover different hate speech-related categories2.
We conclude that this tweet is not offensive.

5.2 Standard texts

We can apply our method to a standard text corpus. For each sentence, we first apply
the lemmatization and the Entity recognition [16] steps and delete the stop words and the
least frequent words. We generate either the bigrams (contiguous pairs of words) [17] or
all the possible pairs of a given sentence, as potential edges. For the uniform sampling the
weights of the edges are constant (for example equal to 1). For the weighted sampling, the
weight of an edge is the Word2vec similarity of two words. In both cases, we process the
text as a stream without storing the entire text.

6 Experiments

We propose a tool with two versions: the first version analyses Twitter streams on specific
tags and the second version analyses texts3. We set the parameters of the windows (length
τ and step λ) and the size K of the Reservoir and proceed online.

6.1 Twitter streams

The Twitter version4 is useful to detect trends and correlate different streams. A stream,
determined by some keywords, generates edges such as (u, v, text)5 where u is the author
and v one of the selected tags in the text, the original tweet.

With a keyword such as CNN, we obtain: 3.103 edges and 103 sentences per minute.
For a window of length τ = 10 minutes, we have approximately m = 3.104 and n = 8000,

2 https://github.com/alassou/t/blob/master/labeled data.csv
3 https://github.com/alassou/t/blob/master/wr.ipynb
4 https://github.com/alassou/t/blob/master/topic.ipynb
5 (@thomasjacksonjr, #PrimeV ideo, ”Watched #ABCMurders from beginning to end and it was

pure #mystery and delight. Excellent show and a must watch for #mysterylovers. Great show on
#PrimeV ideo.”)
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as m = O(n. log n). The size K = 400 of the Reservoir is of the order O(
√
n. log n) '

90.4 = 360. The stability for the uniform sampling of the twitter stream is 0.9. Figure 2
gives the 2-core(C) of a giant component.

Fig. 2. A large connected component C in the Reservoir and its 2-core(C) (in the circle)

We captured 4 twitter streams on the tags #CNN, #FoxNews, #Bitcoin, and #Ripple
during 24 hours with a window size of τ = 1h and a time interval λ = 30mins. Figure
3 indicates the number of edges in a window, approximately m = 30.103 per stream, for
each stream, hence 106 edges in 24 hours. For the #Bitcoin and k = 400, the size of the
giant component is approximately 100.

Fig. 3. Number of edges/per hour for 4 streams during 24h

6.2 Classical texts

We evaluate our methods on the NIPS dataset, (Googleplaystore user reviews) dataset
and the Stanford Natural Language Inference (SNLI) corpus [7] which consists in 570k
human-written English pairs: sentence and annotations.

We apply the uniform sampling and the weighted sampling where the weight is the
absolute value of the Word2Vec similarity between two words. The stability of the two
methods as a function of K is given in Figure 4.

The weighted sampling gives much better result as the uniform sampling stability is
less then 0.5.
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Fig. 4. Stability of the uniform and weighted sampling

6.2.1 Central sentences and Attention mechanisms Each giant component can be
analysed, starting from the node of maximal degree, the center, and their adjacent edges,
the central edges. For the 2-core of Figure 2, we start with the center node 1 of maximum
degree and its adjacent central edges e1, e4, e5, e8. Each edge is of the form (u, v, text)
and we can analyse the attention distribution6 [22] of the words u and v in each ”text”
sentence.

The e8 edge is (skate, jump, ”A boy is jumping on skateboard in the middle of a
red bridge.”) and the e4 edge is (skate, sidewalk, ”The boy skates down the sidewalk.”).
The attention analysis of the first sentence for the words skate and jump is given in the
Figure 5. A giant component provides a central node and central sentences: the 4 sentences

Fig. 5. The analysis of the sentence: A boy is jumping on skateboard in the middle of a red bridge.

associated with the edges of the central node skate, and then recursively along the tree
decomposition of the component. At the next stage, the node 6 would be explored with
three new edges.

If we classify the giant components into k-classes, viewed as topics, each component C
would have a natural distribution over the topics as in [4].

6 For a word u, its attention in a sentence is the distribution over the other words with a weight propor-
tional to its Word2Vec similarity.
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7 Conclusion

We propose sampling techniques to analyse streams of tweets and standard texts in a
streaming mode. We observe the giant components of the Reservoirs in sliding windows and
introduce a distance between components. The uniform sampling is stable for Twitter, and
only the weighted sampling is stable for classical texts. We can classify these components
with the k-means algorithm and detect offensive tweets. Each giant component defines
central words and central sentences.
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Appendix

A Large dense subgraphs

Let S ⊆ V and E(S) be the set of internal edges i.e. edges e = (u, v) where u, v ∈ S.
The classical density of S is the ratio ρ = |E[S]|/|S|. One may want to find subgraphs
with S nodes which maximize ρ. In the case of a stream of edges, the approximation of
dense subgraphs is well studied in [13] and an Ω(n) space lower bound is known [3]. In
[1], another different objective is considered: a γ-cluster of domain S is a subgraph which
depends on a parameter γ ≤ 1 such that |E(S)| ≥ γ.|S|.|S − 1|/2. This problem is also
hard to approximate when S is large. We consider |S| > δ

√
n for some other parameter δ,

hence the (γ, δ)-large dense subgraph problem.

A family of graphs Gn has a (γ, δ)-cluster if for n large enough there exists S such that
S is a (γ, δ)-cluster for Gn. Classical community detection algorithms take the entire graph
as input and apply spectral techniques. We consider a specific regime of graphs defined
by a stream of edges e1, ..., em, ... which follow a power-law degree distribution µ and use
a sublinear space algorithm. A Reservoir sampling [23] with K = O(

√
n. log n/γ · δ) edges

can detect (γ, δ)-large dense subgraphs (clusters) with high probability [12], on the specific
class of graphs taken from µ. We use a one-sided stochastic randomized algorithm A to
detect the existence of a cluster:

– If G has a cluster , ProbΩ[A(x) accepts] ≥ 1− ε
– If G is a random graph drawn from µ with no cluster, Probµ×Ω[A(x) rejects] ≥ 1− ε

B Giant components and sampling

In choosing K edges uniformly, each edge has a uniform probability K/m to be chosen in
the Reservoir. It is an Erdös-Renyi model [9], written G(n, p) with p = K/m.

In the classical Erdös-Renyi model, we start with the complete graph, whereas we start
with a social graph Gn. A fundamental question is the existence of giant components7 and
phase transitions. In the Erdös-Renyi model G(n, p), a giant component occurs if p > 1/n
i.e. when each edge of a clique is selected with probability p. If we generalize to a γ-cluster
S, a giant component occurs if p > 1/γ.|S|.

Social graphs with m edges and n nodes follow a power law degree distribution µ,
i.e. a Zipfian distribution where Prob[d = j] = c/j2. The maximum degree is

√
c.n and

m is O(cn ln(n)). The configuration model [6] studies random graphs with fixed degree
distributions, such as the Zipfian law. The conditions to observe a giant component are
given in [15].

We therefore combine the two models: we start with a social graph G with a power
law degree distribution and then sample it uniformly: it is the configuration model for the
Zipfian law followed by the Erdös-Renyi model.

If the size of a cluster S is larger than δ.
√
n and the Reservoir size K > c.

√
n. logn
γ.δ , then:

K

m
≥ c.

√
n. log n

γ.δ.c.n ln(n)
=

1

γ.δ.
√
n
≥ 1

γ.|S|

In this case we observe a giant component C in the Reservoir. Studies in [15] show
that if we take a random graph with a power law degree distribution, there is no giant

7 A giant component is a connected component larger than a constant fraction of n, the number of nodes.
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component in the Reservoir with high probability. It is the basis of the approach of [12]
to detect clusters on a stream of edges without storing the entire graph but only K >
c.
√
n. logn
γ.δ edges. The detection algorithm detects γ-clusters of size larger than δ.

√
n with

high probability as giant components of the Reservoir. This approach can be generalized
to dynamic windows as presented in [2, 8].

Let 2-core(C) be the graph obtained from the connected component C by removing
the nodes of degree 1 repeatedly8. It can be shown that 2-core(C) is a good approximation
of a γ-cluster of size δ.

√
n. We store the 2-core(C) for each large C, as the witness of the

clusters.

C Weighted Reservoir sampling

We read a stream of edges e1, e2, ...., em, ... where each edge ei has a weight wi and keep K
edges. We keep the K first edges in the Reservoir R. For each new edge ei, where i > K,
we decide to select ei with probability:

K · wi∑
j≤iwj

If we select ei we insert it in the Reservoir in a random position j, replacing the current
element: we select 1 ≤ j ≤ K with probability 1/K.

8 The k-core of a graph G is obtained by removing repeatedly all the notes of degree less than k − 1
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