
International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

Verifying Outsourced Computation in an

Edge Computing Marketplace

Christopher Harth-Kitzerow and Gonzalo Munilla Garrido

Department of Informatics, Technical University of Munich,
Garching, Germany

Abstract. An edge computing marketplace could enable IoT devices (Outsourcers) to outsource
computation to any participating node (Contractors) in their proximity. In return, these nodes
receive a reward for providing computation resources. In this work, we propose a scheme that
verifies the integrity of arbitrary deterministic functions in the presence of both dishonest Out-
sourcers and Contractors who try to maximize their expected payoff. We compile a comprehensive
set of threats for this adversary model and show that not all of these threats are addressed when
combining verification techniques of related work. Our verification scheme fills the gap by detect-
ing or preventing each identified threat. We tested our verification scheme with state-of-the-art
pre-trained Convolutional Neural Network models designed for object detection. On all devices,
our verification scheme causes less than 1ms computational overhead and a negligible network
bandwidth overhead of at most 84 bytes per frame. Our implementation can also perform our
verification scheme’s tasks parallel to the object detection to eliminate any latency overhead.

Keywords: Edge Computing, Internet of Things, Function Verification, Comput-
ing Marketplaces

1 Introduction

Offloading computational tasks from IoT devices to computation resources at the
network edge can improve the responsiveness of existing applications and enable
novel latency-sensitive use cases [1]. In an edge computing marketplace, we assume
that the Outsourcer is a computationally weak IoT device that outsources real-time
data to a Contractor to process. The Contractor can be an edge server or any device
in proximity to the Outsourcer with enough unutilized computational resources to
execute the assigned function reliably and with low latency.

Compared to fixed client-server assignments, an edge computing marketplace
may overcome the challenges of limited availability of servers, insufficient quality
of service, and idle server resources. Dynamic assignments in an open marketplace
could increase availability and competition among edge servers. This allows IoT
applications to profit from increased connectivity and responsiveness due to better
matching. Edge servers, on the other hand, profit from higher resource utilization
due to increased matching rates.

DOI: 10.5121/ijnsa.2017.9403 1
David C. Wyld et al. (Eds): CMLA, CSEIT, NETCoM, NLPD, GRAPH-HOC, WiMoNE, CIoT, NCS - 2022
 pp. 139-157, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.121112

https://doi.org/10.5121/csit.2022.121112
https://airccse.org/cscp.html
https://airccse.org/csit/V12N11.html

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

As IoT devices are often computationally weak, it might be difficult for them
to verify whether responses returned by a third-party Contractor are valid. In fact,
Contractors have an incentive to return a computationally less expensive probabilis-
tic result to save resources while still collecting the reward. Likewise, an Outsourcer
has no incentive to pay an honest Contractor right after receiving all computational
results, and expensive micro-transactions prohibit real-time payment.

In this work, we propose a verification scheme for computation marketplaces
that can verify the integrity of arbitrary deterministic functions. The Outsourcer
verifies the integrity of returned responses by sending some inputs to another Con-
tractor in proximity called the Verifier. We refer to this approach as sampling-based
re-execution. We evaluate our scheme’s performance with outsourced object detec-
tion based on a real-time image stream sent by an IoT device to an edge server.
We provide the following contributions:

1. We compile a comprehensive list of potential threats that a computing market-
place might be vulnerable to in the presence of dishonest participants.

2. We combine existing verification techniques proposed by related work and in-
troduce two novel ones to address all identified threats.

3. Our resulting verification scheme requires little interaction with a trusted third
party (TTP) and is resistant to dishonest Outsourcers, Contractors, and Ver-
ifiers. The TTP does not have to be located at the edge and can act with
arbitrary latency.

4. Our implementation demonstrates that our verification scheme causes negligible
communication and latency overhead.

2 Related Work

In previous work, authors have identified different components that an edge comput-
ing marketplace should provide. These components include a matching and price-
finding algorithm [2], a payment scheme [3] [4], in some cases privacy preserva-
tion [5] [6] [7], and a verification scheme [8] [9]. We focus on designing a verification
scheme in this work and assume that the other components are present.

Compared to schemes based on cryptographic techniques such as Secure Mul-
tiparty Computation, or Fully Homomorphic Encryption, re-execution adds only a
negligible computational and network overhead to the computation. Re-execution
can be implemented in several ways. In [10], the authors propose outsourcing com-
putation to multiple Contractors in a multi-round approach. The Outsourcer sends
different inputs to each Contractor in every round. A trusted master node compares
results if the same input is sent to more than one Contractor. The disadvantage
of this scheme is that it requires many available Contractors in proximity to the
Outsourcer.

2

140 Computer Science & Information Technology (CS & IT)

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

In [11], the authors propose a scheme based on sampling-based re-execution.
Within specified intervals, the Contractor commits to signed Merkle root hashes
based on the responses it sent to the Outsourcer. The Outsourcer can instruct a
third-party Verifier to verify these results by checking if the signed Merkle root’s
signature is correct and if random samples were computed and returned correctly.
The scheme assumes that the Verifier and the Outsourcer are honest.

In [12], the authors propose a scheme based on complete re-execution. The
Outsourcer sends inputs to n = 2 Contractors and accepts the result if they are
identical. If responses do not match, the job gets outsourced again to nnew = n2

Contractors until no conflicts arise. This approach is similar yet less efficient than
our Contestation protocol introduced in section 3. As their scheme does not dis-
tinguish between Contractors and Verifiers, the resulting overhead is higher. Also,
their scheme relies on a trusted time-stamping server that monitors communication
between edge devices. This TTP can end up being the bottleneck of the ecosystem.

In [13], the authors propose a scheme based on sampling-based re-execution
with third-party Verifiers. They utilize smart contracts running on Ethereum to set
incentives for Outsourcers and Contractors. The incentives discourage dishonest
behavior. Verifiers are assumed to be partially trusted.

In [14], the authors propose a scheme based on sampling-based re-execution.
The Contractor commits to a Merkle Tree root hash every few intervals and sends
it to the Outsourcer. The Outsourcer then randomly selects a few samples to re-
compute them and sends a proof of membership challenge to the Contractor. It
aborts the contract if the verified output does not match the Contractor’s response
or if the proof of membership challenge is unsuccessful. The Outsourcer is assumed
to be fully trusted.

3 Design of our Verification Scheme

As our scheme uses re-execution as a verification approach, it can be applied to any
deterministic function. We assume the following setting for outsourced computation
in an edge computing marketplace.

1. Edge servers are stationary (reappearing actors) and offer outsourced compu-
tation for a fee. They can either act as Contractors or Verifiers.

2. Outsourcers are mobile (reappearing and adhoc actors).

3. Outsourcers owe a reward to Contractors and Verifiers for each processed input.

4. Each edge participant may act dishonestly but tries to maximize its expected
payoff.

5. A TTP or Blockchain is present that provides a public key infrastructure, a
reputation system, and handles payments. We refer to this party as the payment
settlement entity (PSE). The PSE does not have to be located at the edge.

3

Computer Science & Information Technology (CS & IT) 141

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

Before outsourcing of computation starts, we assume an Outsourcer and a Con-
tractor have agreed to a contract. The contract contains a unique ID, the partic-
ipants’ public keys, a reward per processed input, and the function/model to be
used is specified. Additionally, the Contractor and Outsourcer may agree on fines,
deposits, and bounties if a participant is caught cheating to increase the protocol’s
robustness. We assume multiple Verifiers are available and willing to agree on a
contract with the Outsourcer to process random sample inputs.

3.1 Preparation Phase

The preparation phase is responsible for assigning a Verifier to a contract while
preventing collusion. We refer to planned collusion if two participants know each
other beforehand and try to collude. We refer to ad-hoc collusion if two participants
do not initially know each other but still try to communicate and collude.

Randomization Randomization ensures that the Outsourcer and the Contractor
commit to a random Verifier. Additionally, the Verifier and the Contractor do
not learn each other’s identities. The protocol consists of the following steps: The
Outsourcer signs the hash h(x) of a large random number x and the contract hash
ch. It sends h(x) with a signature to the Contractor. The Contractor signs the
received hash of the Outsourcer along with a large random number y, the contract
hash, and a list of available Verifiers sorted by their public keys. Along with this
signed hash, the Contractor sends the value y and the list of available Verifiers to
the Outsourcer. By signing the initially sent hash of the Outsourcer, the Contractor
commits to x and y without knowing x. Figure 1 illustrates this protocol.

If the list of available Verifiers matches Outsourcer’s local list, it contacts the
Verifier at (x+y) mod n, where n is the total number of Verifiers. If the Outsourcer
contacts a different Verifer, it will not be able to present the necessary Contractor
signatures during Contestation. Thus, Randomization prevents planned collusion.

Outsourcer Contractor Verifier

h(x), sigO(h(x)||ch)

m = (y, V erifierList), sigC(h(x)||ch||h(m))

Request V eriferList[(x+ y) mod n)]

ack

Fig. 1: Randomization

4

142 Computer Science & Information Technology (CS & IT)

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

Table 1: Payoff matrix with honesty-promoting incentives

Contractor
Verifier

Diligent Dishonest

Diligent r − ch r − ch + b

Dishonest rq − (f + b)(1− q)− cd r − cd

Game-theoretic Incentives Even if the Verifier and the Contractor do not know
each other, there is a risk of ad-hoc collusion. Suppose there exists a q-algorithm
that is computationally inexpensive but provides a correct result with a certain
probability q. For object detection, this might be the naive response that no ob-
ject is detected and, therefore, no bounding boxes at specific coordinates have to
be estimated. There is a reward r for returning a valid result and computation
costs when computing the desired function honestly ch or dishonestly cd. From a
game-theoretic perspective [15], there are two nash equilibria [16]. One nash equi-
librium exists when both players act honestly, but the other when both players act
dishonestly [17] [12].

It is crucial to design incentives that eliminate the Nash equilibrium of both
players acting dishonestly. In [12] and [17], the authors have identified a relationship
of incentives by adding fees for cheating players and bounties for dishonest players
such that being honest is a dominant strategy from a game-theoretic point of view.
Table 1 illustrates the payoff matrix of the Contractor with the use of a bounty b
and a fee f . The payoff matrix for the Verifier looks identical. Our scheme uses an
initial deposit to enforce that a cheating participant pays the fine after detection.

3.2 Execution Phase

After agreeing on a contract with the random Verifier, the Outsourcer starts sending
inputs to the Contractor and the Verifier to process.

Sampling Sampling refers to picking one random input out of a collection of
inputs. In our verification scheme, the Outsourcer sends samples to the Verifier
to check whether its response matches the Contractor’s response belonging to the
same input. We call this process sampling-based re-execution. Sampling-based re-
execution has a significant advantage over complete re-execution. Just with a few
samples, a dishonest Contractor with a cheating rate c can be detected with nearly
100% confidence. Thus, we can significantly improve the efficiency of the verification
process at a negligible security drawdown.

During sampling, the Outsourcer chooses an interval length l and sends only
one random sample per interval to the Verifier. The chance p of detecting a cheating
attempt within n intervals is p = 1 − (1 − c)n. Even if the Contractor has a low

5

Computer Science & Information Technology (CS & IT) 143

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

cheating rate, e.g., c = 0.1, the Outsourcer needs less than n = 50 intervals to
detect cheating with 99% confidence.

Digital Signatures Since participants communicate in an unmonitored, peer-to-
peer fashion in our verification scheme, we need a way to securely record payment
promises and dishonest behavior. Otherwise, an Outsourcer could claim never to
have received any responses from the other participants. Likewise, the Contractor
and Verifier could deny that a dishonest result originated from them and could
claim to have processed more responses than they did. The PSE can only solve a
dispute and hold entities accountable with tamper-proof records.

Figure 2 shows a high-level overview of sampling in combination with digital
signatures. ”i = r” indicates that the current index i matches the random number
r generated in the current interval.

When an Outsourcer sends an input, it always attaches a digital signature signed
over the current input index, the contract hash, and the input itself. This ensures
that each signature can be traced back to one unique input. Also, the Outsourcer in-
cludes a number of currently acknowledged outputs n to the message and signature.
Thus, the Contractor and the Verifier receive a signed commitment of redeeming
n times the specified reward per response. The unique contract hash ensures that
each participant can only redeem payment once per contract.

When the Contractor and the Verifier send a result to the Outsourcer, they at-
tach the associated input index, along with a digital signature forged over the con-
tract hash, input index, input signature, and the input itself. This signature serves
as proof of being the originator of a fraudulent message when detected cheating. If
the signature verification fails, the participant aborts the contract.

1. Send xi,

2. Send = f(xi),

4. Send = f(xi),
3. if i = r:

Send xi,

Contractor

Verifier

Outsourcer

5. Compare ,

Fig. 2: Execution phase

6

144 Computer Science & Information Technology (CS & IT)

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

Commitment to Messages Using Merkle Trees Merkle Trees can be used as
a data structure to efficiently verify whether data is contained in a large collection.
The root hash of a Merkle tree can be used to verify if data is included in the whole
tree with log2(n) steps. Some verification schemes use this attribute of Merkle trees
in combination with signatures to commit to large amounts of inputs or outputs
by sending the signed Merkle tree root hash [18].

In our scheme, a Contractor utilizing Merkle Trees commits to a collection of
responses and receives a proof-of-membership challenge in even intervals. This way,
instead of signing all responses, it is sufficient for the Contractor only to sign one
Merkle root hash and challenge-response per interval, thus improving efficiency.

3.3 Closing Phase

A participant can terminate a contract at any time. If the contract is terminated
according to custom, the Verifier and the Contractor store their last signed input
of the Outsourcer, containing the latest number of acknowledged outputs and the
signed contract hash. They send the signature and all values to verify it to the
PSE. To prevent insufficient quality of service (QoS), a global reputation system
and local blocklists per node ensure that participants providing reliable service can
be identified. Thus, all participants can submit a review for the other participants
at the end of a contract.

The PSE verifies the signatures and deducts the reward per input specified in the
contract times the number of acknowledged output contained in the last input on
behalf of the Outsourcer after a deadline. Within that deadline, the Outsourcer can
report dishonest behavior if it holds two responses that do not match. In this case,
the Outsourcer sends the input, both responses, their signatures, and the contracts
to the PSE. For scalability reasons, the PSE does not re-execute the computation.
It only checks whether all values match their signatures and verifies if responses
are indeed unequal. Provisionally, the Contractor is accused of cheating. Within
the specified deadline, the Contractor can decide to engage in a protocol we call
Contestation to prove that the Verifier’s response was incorrect instead.

Contestation Contestation ensures that a falsely accused Contractor or Veri-
fier can prove its innocence. A participant accused of cheating may decide to re-
outsource the original input to two additional random Verifiers within a deadline.
If both random Verifiers return a response that matches the participant’s response,
it presents their responses and signatures to the PSE. The participant having the
minority of random Verifier support at the end of Contestation is convicted of
cheating.

If a Verifier is accused of cheating, it can use the identical protocol to contact
two additional random Verifiers and flip the majority of random Verifier support.
This protocol might be repeated until no available Verifiers are left. If more than

7

Computer Science & Information Technology (CS & IT) 145

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

50% of available Verifiers are non-colluding, Contestation serves as a guarantee that
the participant who returned a fraudulent response is found guilty. In combination
with a nearly 100% detection rate of cheating using sampling-based re-execution,
any cheating parting will be eventually found guilty with a high probability. The
participant found guilty at the end of the protocol has to pay the specified fee in its
contract, and all additionally consulted Verifiers. In the first round of Contestation,
the Outsourcer must prove to the PSE that it contacted the correct Verifier during
Randomization by presenting the received Contractor signatures.

Figure 3 illustrates a message sequence chart of Contestation. Notice that the
TTP is involved in minimal computation to ensure scalability. It only needs to
verify anything if the convicted participant contests conviction. Also, a convicted
participant failing to get a majority of Verifier support has no incentive to send the
last message and occupy the TTP.

Note that for a dishonest participant, it is irrational to perform Contestation
as additional random Verifiers have to be paid for their service. The computational
overhead of Contestation is low as only one input has to be recomputed. However, it
requires finding multiple available Verifiers in the system. As latency is not critical
in this scenario, those random Verifiers do not have to be located at the edge and
can be computationally weak devices. We expect that Contestation is usually not
performed as its existence alone ensures that a dishonest participant decreases its
expected payoff when cheating.

Convicted Participant TTP V1 V2

request Verifiers

assign Verifiers

input

response, sigV 1(input, response)

input

response, sigV 2(input, response)

records, sigV 1, sigV 2, sigO

Fig. 3: Contestation

8

146 Computer Science & Information Technology (CS & IT)

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

4 Threat Model

In our verification scheme, the Outsourcer, the Contractor, and the Verifier are
untrusted and may behave dishonestly. However, we assume that they try to max-
imize their expected payoff. This type of threat model was first introduced by the
authors of [17]. We noticed that existing verification schemes such as [12] assuming
payoff-maximizing adversaries address only a subset of possible threats that can
result from these assumptions.

Due to the lack of an existing collection of threats in this setting, we compile
a comprehensive list of possible threats. We consider internal threats of dishonest
behavior by one participant and by collusion. Also, we consider threats of external
attackers and quality of service (QoS) violations such as timeouts and low response
rates. We assume a distant TTP conducts payments and delegates handling of
disputes.

We compiled nine threats in total. These are described in the following para-
graphs. Our verification scheme resists all identified threats with high probability.
Table 2 summarizes the techniques used by our verification scheme to prevent or
detect each possible protocol violation we identified. The confidence column indi-
cates the probability that the protocol violation can be prevented or detected by
our techniques. Note that Contestation provides a 100% detection rate of associated
protocol violations only if more than 50% of available Verifiers in the ecosystem are
non-colluding by not agreeing on an identical incorrect response.

4.1 Contractor sends back false responses to save resources

If a Contractor sends back incorrect responses, the Outsourcer detects this with high
probability by sending random samples to the Verifier and comparing if responses
belonging to the same input from both participants are equal. In section 3, we
show that even with a low number of samples, a cheating Contractor is caught with
nearly 100% confidence.

4.2 Verifier sends back false responses to save resources

When the Outsourcer detects two unequal responses from the Verifier and the Con-
tractor, our verification scheme provisionally accuses the Contractor of cheating.
However, the Contractor can perform Contestation to prove that the Verifier sent
the incorrect response instead.

4.3 Outsourcer sends back different inputs to Contractor and Verifier
to refuse payment

The Outsourcer may send two different inputs to the Contractor and the Verifier
two receive different responses. It can report these responses to the PSE to refuse

9

Computer Science & Information Technology (CS & IT) 147

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

payment. This behavior can only be detected if proof is available that the responses
resulted from two different inputs. Thus, the Outsourcer must sign each sent raw
input with contract-related information. By concatenating the Outsourcer’s signa-
ture to the Contractor’s and Verifier’s responses before signing, Contestation can
verify if the Outsourcer sent identical raw inputs to both parties.

4.4 Contractor or Verifier tries to avoid global penalties when
convicted of cheating or QoS violations

Even when a Verifier or Contractor is detected cheating by an Outsourcer, they
may claim never to have sent the reported response. The use of digital signatures
prevents this threat.

4.5 Participant refuses to pay even if obliged to by the protocol

Even if the Outsourcer is obliged to reward an honest Contractor or Verifier, there
needs to be a way to enforce the payment. Likewise, the Verifier or the Contractor
might try to reject paying a penalty fee when detected cheating.

Microtransactions sent for each response are not an option. Usually, the pay-
ment scheme can become a latency bottleneck, and each transaction comes with
transaction costs. Therefore, payment has to be handled after a contract ends. We
assume that the PSE supports deposits and payments on other participants’ behalf.
It does not need to recompute any values or execute contract-specific functions.

4.6 Outsourcer and Verifier collude to refuse payment and save
resources

The Outsourcer and the Verifier may collude to report the Contractor for cheating.
Contestation detects this dishonest behavior. If the Verifier is detected cheating
by the Contractor through Contestation, it has to pay a fine. If the incentives are
set correctly, acting honestly maximizes the expected payoff. Randomization also
prevents planned collusion with high probability.

.

4.7 Contractor and Verifier collude to save resources

The Contractor and the Verifier may collude to save computational resources by
agreeing on an incorrect response. The Outsourcer checks if both results match and
assumes the responses to be correct. Randomization prevents this behavior with a
high probability in case of planned collusion.

Additionally, a contract with honesty-promoting incentives maximizes the ex-
pected payoff when acting honestly. This measurement makes ad-hoc collusion be-
tween Contractor and Verifier unlikely as well. Beyond our verification scheme,

10

148 Computer Science & Information Technology (CS & IT)

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

an Outsourcer may decide to utilize more than one Verifier or perform additional
verification techniques at a lower frequency.

4.8 Timeouts, Low Response Rate, High Response time

In our verification scheme, dishonest Contractors and Verifiers do not receive pay-
ments and must pay a fine. In contrast, QoS violations such as timeouts, a low
response rate, or a high response time come without monetary consequences. Nev-
ertheless, participating in an ecosystem with insufficient processing or networking
capabilities should be discouraged.

Whenever a participant receives a message from another participant that ex-
ceeds the QoS thresholds specified in its internal parameters, it may abort the
contract. It may also blacklist a participant and submit a negative review. Thus,
an unreliable participant misses out on the current contract’s ongoing payments
and may receive fewer assignments or less payoff from future contracts.

4.9 Message Tampering

An external attacker may attempt to tamper with messages sent between partici-
pants to harm a participant. Digital signatures prevent this behavior.

Table 2: Utilized Techniques to Prevent Protocol Violations

Type of Violation Description Techniques Confidence

Dishonest Behav-
ior by Individual

1. Contractor sends back false response to
save resources

Sampling-based re-execution, utiliza-
tion of a third party Verifier

Up to 100%

2. Verifier sends back false response to
save resources

Contestation 100%

3. Outsourcer sends different input to
Contractor and Verifier to refuse payment

Digital Signatures (signature chain),
Contestation

100%

4. Contractor or Verifier tries to avoid
global penalties

Digital Signatures 100%

5. Participant refuses to pay even if
obliged to by the protocol

PSE authorized to conduct payment on
behalf of another entity

100%

Dishonest Behav-
ior via Collusion

6. Outsourcer and Verifier collude to
refuse payment and save resources

Randomization, Game-theoretic incen-
tives, Contestation

100%

7. Contractor and Verifier collude to save
resources

Randomization, Game-theoretic incen-
tives

High confi-
dence

QoS Violation 8. Timeout, Low Response Rate, High Re-
sponse Time

Blacklisting, Review system, Contract
abortion

100%

External Threat 9. Message Tampering Digital Signatures 100%

11

Computer Science & Information Technology (CS & IT) 149

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

4.10 Other Threats

Outsourcers and Contractors can join the ecosystem with multiple identities with-
out hurting the system’s security. However, the PSE should issue identity checks of
new Verifiers in the ecosystem to prevent Sybil attacks [18]. Otherwise, a participant
can increase its probability of matching with colluding participants.

5 Discussion

Out of the different re-execution approaches introduced in section 2, sampling based
re-execution is the most practical. We further borrow the following other techniques
from related work to improve the outsourcing process.

1. Digitial dignatures to hold verifiable proofs of received messages [9] [19] [11] [18].

2. Merkle Trees to reduce the required number of digital signatures that need to
be sent [9] [14] [11] [18].

3. TTPs or Blockchains to resolve payments or record communication [9] [13] [19]
[18] [12].

4. A global reputation system to promote honest behavior [10].

Other proposed verification schemes often require a TTP at the network edge
or assume that one of the participants is a trusted party (TP). A comparison of
the trust assumptions of different schemes is shown in Table 3. In our verification
scheme, all participants at the edge may act dishonestly. During outsourcing, they
collect publicly verifiable proofs from other participants to later present to a distant
trusted PSE. This TTP conducts payments and delegates handling of disputes.

Table 3: Trusted parties required in different schemes

Scheme TPs in-
volved

TPs involved during
execution phase

Assumptions

Ours 1 0 Payment settlement entity is fully trusted

[14] 1 1 Outsourcer is fully trusted

[11] 2 2 Outsourcer and Verifier are fully trusted

[20] 1 1 Outsourcer is fully trusted

[18] > 3 1 Outsourcer is semi-trusted

[10] > 2 > 2 Multiple Contractors available for one Contract,
Pool of trusted nodes available

[13] 1 1 Verifiers are semi-trusted

[12] 2 1 Trusted timestamp server is available

12

150 Computer Science & Information Technology (CS & IT)

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

Edge Com-
puting Mar-
ketplace

Verification
Scheme [8, 9]

Resource
Matching [2]

Payment
Scheme [3, 4]

Privacy Preser-
vation [5–7]

Others [21]

Arbitrary
Functions
[13, 22–25]

CNN Infer-
ence [26–31]

Matrix Multipli-
cation [32–36]

Pre-Image Com-
putation [37–39]

Others [40–46]

Re-execution
[9,11,12,14,18,20]

Trusted Soft-
ware/Hard-

ware [24, 25, 47]

Fully Homo-
morphic En-

cryption [22, 23]

ZK-SNARK
[27, 28]

Others [26, 29–31]

Sampling-
based Re-
execution
[9, 11, 14, 20]

Complete Re-
execution [12]

Merkle Trees
[9, 11, 14, 18]

Game-theoretic
Incentives and
Reputation Sys-
tems [10, 12, 18]

Digital Sig-
natures, Sig-
nature Chain

[9, 11, 12, 18, 19]

Others [9,
12, 13, 18, 19]

Randomization,
Contestation

2, 3, 6, 7 3, 4, 9
Improves

Performance
6, 7, 8 1, 2, 5

Components

Function Type
to Verify

Verification
Approaches

Types of Re-
Execution

Techniques
Utilized by Veri-
fication Schemes

Techniques
Address fol-

lowing Threats
from Table 2

Fig. 4: Overview: Designed verification scheme

Figure 4 shows an overview of our scheme in the context of our literature anal-
ysis. The last two comparisons show different verification techniques utilized by ex-
isting verification schemes based on re-execution. Even by combining these existing
techniques, we can only solve 7 out of our 9 identified possible threats. We address
the remaining two by our Randomization and Contestation protocols (marked green
in figure 4):

Threat 6 supposes that the Outsourcer and the Verifier collude to refuse pay-
ment to the Contractor. Randomization prevents this behavior with a high prob-
ability in case of planned collusion. Contestation prevents this behavior in both
cases of adhoc and planned collusion. Threat 3 supposes that the Outsourcer sends
different inputs to the Contractor and the Verifier. This behavior is detected by
Contestation. We discuss both threats in more detail in section 4.

6 Performance

In our test setup, a Raspberry Pi (Outsourcer) sends a real-time webcam stream
to two different machines (Verifier and Contractor) in the local network. The Con-

13

Computer Science & Information Technology (CS & IT) 151

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

tractor and the Verifier send back bounding boxes of detected objects in a frame.
One test setup uses a regular GPU/CPU for inference, and one uses a Coral USB
Accelerator. The Coral USB Accelerator is an entry-level Tensor Processing Unit
(TPU) that is specifically designed to perform neural network inference [48]. We use
weights that were pre-trained on the Microsoft Coco dataset [49]. We use Yolov4 [50]
and MobileNet SSD V2 [51] as models for object detection.

Our implementation uses the NaCl ED25519 signature scheme and can perform
the verification scheme’s task in parallel to the object detection. This eliminates
the latency overhead of our scheme as the verification scheme’s task utilizes one
CPU thread while the GPU is the bottleneck when performing inference. The source
code of our implementation is publicly available here. Our implementation supports
multithreading, Merkle Trees, and non-blocking message pattern to improve the
efficiency of our scheme. An overview of the test setup is provided in the appendix.
Table 4 shows the key results of our test implementation.

Our results show that our verification scheme causes less than 1ms of latency
overhead per frame. The Contractor’s GPU is the system’s bottleneck in our test
setup, limiting overall performance to 68.06 fps. As we only used a mid-range GPU
and an entry-level edge accelerator in our tests, more potent Contractor hardware
could increase overall system performance to match the Outsourcer’s performance
of more than 200fps. The average 416x416 frame has a size of 120 KB in our tests.
The Network bandwidth overhead per participant is negligible at a maximum of
84 bytes per frame. It consists of a 512-bit large signature and, at most, five 32 bit
integers such as frame index, acknowledged responses, and other contract-related
information. When Merkle Trees are utilized, the Contractor and the Verifier only
send signatures when the Outsourcer requests a proof-of-membership challenge.

Table 4: Key Results
Participant Device CPU GPU Model Frames

Second
Time spent on
application (%)

Time spent on
verification (%)

Time spent on
verification (ms)

Outsourcer Raspberry Pi
Model 4B

MobileNet SSD
V2 300×300

236.00 78.70 21.30 0.90

Outsourcer Raspberry Pi
Model 4B

Yolov4 tiny
416×416

146.90 85.10 14.90 1.01

Contractor Desktop PC Core i7
3770K

GTX 970 Yolov4 tiny
416×416

68.06 100.00 0.00 0.00

Contractor Desktop PC Core i7
3770K

Coral USB
Accelerator

MobileNet SSD
V2 300×300

63.59 100.00 0.00 0.00

Contractor Notebook Core i5
4300U

Coral USB
Accelerator

MobileNet SSD
V2 300×300

49.30 100.00 0.00 0.00

Verifier Notebook Core i5
4300U

Coral USB
Accelerator

MobileNet SSD
V2 300×300

28.75 - 0.00 0.00

14

152 Computer Science & Information Technology (CS & IT)

https://github.com/chart21/Verification-of-Outsourced-Object-Detection

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

7 Conclusion

In this work, we proposed a scheme for verifying arbitrary outsourced functions in
an edge computation marketplace. Our verification scheme is resistant to a com-
prehensive set of protocol violations that might occur in a computation market-
place with untrusted participants. We benchmarked our verification scheme’s per-
formance on consumer hardware and TPUs. Our verification scheme achieves less
than 1ms of latency overhead per frame on all tested machines. By utilizing con-
currency, the overhead can be reduced to 0 by running the verification scheme’s
tasks in a parallel thread to the outsourced computation. The network bandwidth
overhead of our scheme caused mainly by digital signatures is negligible (at most
84 bytes per frame).

In comparison with verification schemes proposed by the current academic lit-
erature, our verification scheme provides additional security by preventing or de-
tecting all threats we identified. At the same time, it only requires third-party
involvement outside the network edge. These performance and security character-
istics make our scheme ideal for use within an edge computing marketplace that
matches computationally weak untrusted IoT devices with untrusted third-party
resources to outsource latency-sensitive tasks.

Our verification scheme implements one essential component of a fully func-
tioning edge computing marketplace. As illustrated in figure 4, the remaining com-
ponents to make an edge computing marketplace viable are: Payment, Matching
and price-finding, and Privacy preservation. Future work may optimize and aggre-
gate all components to build an end-to-end system serving as a standalone edge
computing marketplace for arbitrary functions.

References

1. W. Tang, X. Zhao, W. Rafique, L. Qi, W. Dou, and Q. Ni, “An offloading method using decen-
tralized p2p-enabled mobile edge servers in edge computing,” Journal of Systems Architecture,
vol. 94, pp. 1–13, 2019.

2. A. Zavodovski, S. Bayhan, N. Mohan, P. Zhou, W. Wong, and J. Kangasharju, “Decloud:
Truthful decentralized double auction for edge clouds,” 05 2019.

3. R. Rahmani, Y. Li, and T. Kanter, “A scalable distriubuted ledger for internet of things
based on edge computing,” in Seventh International Conference on Advances in Computing,
Communication and Information Technology-CCIT 2018, Rome, Italy, 27-28 October, 2018.
Institute of Research Engineers and Doctors (IRED), 2018, pp. 41–45.

4. L. Zhao, Q. Wang, C. Wang, Q. Li, C. Shen, X. Lin, S. Hu, and M. Du, “Veriml: Enabling
integrity assurances and fair payments for machine learning as a service,” arXiv preprint
arXiv:1909.06961, 2019.

5. J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, “Data security and privacy-preserving in
edge computing paradigm: Survey and open issues,” IEEE Access, vol. 6, pp. 18 209–18 237,
2018.

6. Y. Wang, Z. Tian, S. Su, Y. Sun, and C. Zhu, “Preserving location privacy in mobile edge
computing,” in ICC 2019 - 2019 IEEE International Conference on Communications (ICC),
05 2019, pp. 1–6.

15

Computer Science & Information Technology (CS & IT) 153

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

7. M. Gheisari, Q.-V. Pham, M. Alazab, X. Zhang, C. Fernández-Campusano, and G. Srivastava,
“Eca: An edge computing architecture for privacy-preserving in iot-based smart city,” IEEE
Access, vol. PP, pp. 1–1, 08 2019.

8. W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey on the edge
computing for the internet of things,” IEEE Access, vol. 6, pp. 6900–6919, 2018.

9. H. Huang, X. Chen, Q. Wu, X. Huang, and J. Shen, “Bitcoin-based fair payments for out-
sourcing computations of fog devices,” Future Generation Computer Systems, vol. 78, 12 2016.

10. R. Di Pietro, F. Lombardi, F. Martinelli, and D. Sgandurra, “Anticheetah: Trustworthy
computing in an outsourced (cheating) environment,” Future Generation Computer Systems,
vol. 48, pp. 28–38, 2015.

11. L. Wei, H. Zhu, Z. Cao, X. Dong, W. Jia, Y. Chen, and A. V. Vasilakos, “Security and privacy
for storage and computation in cloud computing,” Information sciences, vol. 258, pp. 371–386,
2014.

12. A. Küpçü, “Incentivized outsourced computation resistant to malicious contractors,” IEEE
Transactions on Dependable and Secure Computing, vol. 14, no. 6, pp. 633–649, 2015.

13. S. Eisele, T. Eghtesad, N. Troutman, A. Laszka, and A. Dubey, “Mechanisms for outsourcing
computation via a decentralized market,” arXiv preprint arXiv:2005.11429, 2020.

14. W. Du, J. Jia, M. Mangal, and M. Murugesan, “Uncheatable grid computing,” in 24th Inter-
national Conference on Distributed Computing Systems, 2004. Proceedings. IEEE, 2004, pp.
4–11.

15. M. J. Osborne et al., An introduction to game theory. Oxford university press New York,
2004, vol. 3, no. 3.

16. M. Aghassi and D. Bertsimas, “Robust game theory,” Mathematical Programming, vol. 107,
no. 1-2, pp. 231–273, 2006.

17. M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, and A. Lysyanskaya, “Incentivizing
outsourced computation,” in Proceedings of the 3rd international workshop on Economics of
networked systems, 2008, pp. 85–90.

18. M. Nabi, S. Avizheh, M. V. Kumaramangalam, and R. Safavi-Naini, “Game-theoretic analysis
of an incentivized verifiable computation system,” in International Conference on Financial
Cryptography and Data Security. Springer, 2019, pp. 50–66.

19. X. Chen, J. Li, and W. Susilo, “Efficient fair conditional payments for outsourcing computa-
tions,” IEEE Transactions on Information Forensics and Security, vol. 7, no. 6, pp. 1687–1694,
2012.

20. H. Wang, “Integrity verification of cloud-hosted data analytics computations,” in Proceedings
of the 1st International Workshop on Cloud Intelligence, 2012, pp. 1–4.

21. I. Psaras, “Decentralised edge-computing and iot through distributed trust,” 06 2018, pp.
505–507.

22. Y. C. Chunming Tang, “Efficient non-interactive verifiable outsourced computation for arbi-
trary functions,” Cryptology ePrint Archive, Report 2014/439, 2014, https://eprint.iacr.org/
2014/439.

23. C. Xiang and C. Tang, “New verifiable outsourced computation scheme for an arbitrary func-
tion,” International Journal of Grid and Utility Computing, vol. 7, p. 190, 01 2016.

24. T. Combe, A. Martin, and R. Di Pietro, “To docker or not to docker: A security perspective,”
IEEE Cloud Computing, vol. 3, no. 5, pp. 54–62, 2016.

25. S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom, “Sgaxe: How sgx fails in practice,” 2020.
26. H. Chabanne, J. Keuffer, and R. Molva, “Embedded proofs for verifiable neural networks,”

IACR Cryptol. ePrint Arch., vol. 2017, p. 1038, 2017.
27. S. Lee, H. Ko, J. Kim, and H. Oh, “vcnn: Verifiable convolutional neural network,” IACR

Cryptol. ePrint Arch., vol. 2020, p. 584, 2020.
28. J. Groth, “On the size of pairing-based non-interactive arguments,” 05 2016, pp. 305–326.
29. X. Chen, J. Ji, L. Yu, C. Luo, and P. Li, “Securenets: Secure inference of deep neural networks

on an untrusted cloud,” in ACML, 2018.

16

154 Computer Science & Information Technology (CS & IT)

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

30. Z. Ghodsi, T. Gu, and S. Garg, “Safetynets: Verifiable execution of deep neural networks on an
untrusted cloud,” in Proceedings of the 31st International Conference on Neural Information
Processing Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc., 2017, p.
4675–4684.

31. A. A. Badawi, J. Chao, J. Lin, C. F. Mun, J. J. Sim, B. H. M. Tan, X. Nan, K. M. M. Aung,
and V. R. Chandrasekhar, “Towards the alexnet moment for homomorphic encryption: Hcnn,
thefirst homomorphic cnn on encrypted data with gpus,” 2018.

32. R. Freivalds, “Probabilistic machines can use less running time.” in IFIP congress, vol. 839,
1977, p. 842.

33. X. Lei, X. Liao, T. Huang, and F. H. Rabevohitra, “Achieving security, robust cheating re-
sistance, and high-efficiency for outsourcing large matrix multiplication computation to a
malicious cloud,” Inf. Sci., vol. 280, pp. 205–217, 2014.

34. Z. Cao and L. Liu, “A note on ”achieving security, robust cheating resistance, and high-
efficiency for outsourcing large matrix multiplication computation to a malicious cloud”,” 03
2016.

35. D. Benjamin and M. J. Atallah, “Private and cheating-free outsourcing of algebraic computa-
tions,” in 2008 Sixth Annual Conference on Privacy, Security and Trust, 2008, pp. 240–245.

36. M. J. Atallah and K. B. Frikken, “Securely outsourcing linear algebra computations,” in
Proceedings of the 5th ACM Symposium on Information, Computer and Communications
Security, ser. ASIACCS ’10. New York, NY, USA: Association for Computing Machinery,
2010, p. 48–59. [Online]. Available: https://doi.org/10.1145/1755688.1755695

37. B. Carbunar and M. Tripunitara, “Fair payments for outsourced computations,” in 2010 7th
Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communi-
cations and Networks (SECON), 2010, pp. 1–9.

38. B. Carbunar and M. V. Tripunitara, “Payments for outsourced computations,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 23, no. 2, pp. 313–320, 2012.

39. P. Golle and I. Mironov, “Uncheatable distributed computations,” vol. 2020, 04 2001, pp.
425–440.

40. G. Xu, G. T. Amariucai, and Y. Guan, “Delegation of computation with verification outsourc-
ing: Curious verifiers,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 3,
pp. 717–730, 2017.

41. X. Hu and C. Tang, “Secure outsourced computation of the characteristic polynomial and
eigenvalues of matrix,” Journal of Cloud Computing, vol. 4, 12 2015.

42. C. Wang, K. Ren, J. Wang, and Q. Wang, “Harnessing the cloud for securely outsourcing large-
scale systems of linear equations,” IEEE Transactions on Parallel and Distributed Systems,
vol. 24, no. 6, pp. 1172–1181, 2013.

43. X. Lei, X. Liao, T. Huang, H. Li, and C. Hu, “Outsourcing large matrix inversion computation
to a public cloud,” IEEE TRANSACTIONS ON CLOUD COMPUTING, vol. 1, pp. 78–87,
07 2013.

44. W. Song, B. Wang, Q. Wang, C. Shi, W. Lou, and Z. Peng, “Publicly verifiable computation of
polynomials over outsourced data with multiple sources,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 10, pp. 2334–2347, 2017.

45. X. Wang, K.-K. R. Choo, J. Weng, and J. Ma, “Comments on “publicly verifiable compu-
tation of polynomials over outsourced data with multiple sources”,” IEEE Transactions on
Information Forensics and Security, vol. PP, pp. 1–1, 08 2019.

46. J. Meena, S. Tiwari, and M. Vardhan, “Privacy preserving, verifiable and efficient outsourcing
algorithm for regression analysis to a malicious cloud,” Journal of Intelligent & Fuzzy Systems,
vol. 32, pp. 3413–3427, 04 2017.

47. V. Costan and S. Devadas, “Intel sgx explained,” IACR Cryptol. ePrint Arch., vol. 2016, p. 86,
2016.

48. A. Ghosh, S. A. Al Mahmud, T. I. R. Uday, and D. M. Farid, “Assistive technology for visually
impaired using tensor flow object detection in raspberry pi and coral usb accelerator,” in 2020
IEEE Region 10 Symposium (TENSYMP), 2020, pp. 186–189.

17

Computer Science & Information Technology (CS & IT) 155

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

49. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft coco: Common objects in context,” in European conference on computer
vision. Springer, 2014, pp. 740–755.

50. A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of
object detection,” arXiv preprint arXiv:2004.10934, 2020.

51. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single
shot multibox detector,” in European conference on computer vision. Springer, 2016, pp.
21–37.

8 Appendix

Codebase: https://github.com/chart21/Verification-of-Outsourced-Object-Detection

18

156 Computer Science & Information Technology (CS & IT)

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

https://airccse.org/

International Journal of Network Security & Its Applications (IJNSA) Vol.9, No.4, July 2017

TC
P

R
ec

ei
vi

ng
So

ck
et

O
ut

so
ur

ce
r

Th
re

ad
 1

C
ap

tu
re

 n
ew

 fr
am

e

C
om

pr
es

s
fra

m
e

Si
gn

 fr
am

e

Se
nd

 fr
am

e

If
in

de
x

=
sa

m
pl

e
in

de
x

Si
gn

 fr
am

e

Se
nd

 fr
am

e

Th
re

ad
 2

R
ec

ei
ve

 n
ew

 re
sp

on
se

Th
re

ad
 3

R
ec

ei
ve

 n
ew

 re
sp

on
se

TC
P

R
ec

ei
vi

ng
So

ck
et

Ve
rif

ie
r

Th
re

ad
 3

Ve
rif

y
si

gn
at

ur
e

Pr
ep

ro
ce

ss
in

g

Th
re

ad
 2

R
ec

ei
ve

 n
ew

 in
pu

t

If
ne

w
 re

sp
on

se

Ve
rif

y
si

gn
at

ur
e

If
ne

w
 re

sp
on

se
Ve

rif
y

si
gn

at
ur

e

C
om

pa
re

 re
sp

on
se

s

R
es

po
ns

e,
 in

de
x,

 s
ig

na
tu

re

Fr
am

e,
 in

de
x,

nu

m
be

r o
f a

ck
no

w
le

dg
ed

 o
ut

pu
ts

,
si

gn
at

ur
e

Th
re

ad
 1

In
fe

re
nc

e
Po

st
pr

oc
es

si
ng

Th
re

ad
 4

Si
gn

 re
sp

on
se

Se
nd

 re
sp

on
se

TC
P

R
ec

ei
vi

ng
So

ck
et

TC
P

R
ec

ei
vi

ng
So

ck
et

Th
re

ad
 3

Ve
rif

y
si

gn
at

ur
e

Pr
ep

ro
ce

ss
in

g

Th
re

ad
 2

R
ec

ei
ve

 n
ew

 in
pu

t

R
es

po
ns

e,
 in

de
x,

 s
ig

na
tu

re

Fr
am

e,
 in

de
x,

nu

m
be

r o
f a

ck
no

w
le

dg
ed

 o
ut

pu
ts

,
si

gn
at

ur
e

Th
re

ad
 1

In
fe

re
nc

e
Po

st
pr

oc
es

si
ng

Th
re

ad
 4

Si
gn

 re
sp

on
se

Se
nd

 re
sp

on
se

C
on

tr
ac

to
r

TC
P

Se
nd

in
g

So
ck

et

TC
P

Se
nd

in
g

So
ck

et

TC
P

Se
nd

in
g

So
ck

et

TC
P

Se
nd

in
g

So
ck

et

Fig. 5: Test Setup

19

Computer Science & Information Technology (CS & IT) 157

	Verifying Outsourced Computation in an Edge Computing Marketplace
	Introduction
	Related Work
	Design of our Verification Scheme
	Preparation Phase
	Randomization
	Game-theoretic Incentives

	Execution Phase
	Sampling
	Digital Signatures
	Commitment to Messages Using Merkle Trees

	Closing Phase
	Contestation

	Threat Model
	Contractor sends back false responses to save resources
	Verifier sends back false responses to save resources
	Outsourcer sends back different inputs to Contractor and Verifier to refuse payment
	Contractor or Verifier tries to avoid global penalties when convicted of cheating or QoS violations
	Participant refuses to pay even if obliged to by the protocol
	Outsourcer and Verifier collude to refuse payment and save resources
	Contractor and Verifier collude to save resources
	Timeouts, Low Response Rate, High Response time
	Message Tampering
	Other Threats

	Discussion
	Performance
	Conclusion
	Appendix

