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ABSTRACT 

 
In traditional SaaS enterprise applications, microservices are an essential ingredient to deploy 

machine learning (ML) models successfully. In general, microservices result in efficiencies in 

software service design, development, and delivery. As they become ubiquitous in the redesign 

of monolithic software, with the addition of machine learning, the traditional applications are 

also becoming increasingly intelligent. Here, we propose a portable ML microservice 

framework Minerva (microservices container for applied ML) as an efficient way to modularize 

and deploy intelligent microservices in traditional “legacy” SaaS applications suite, especially 

in the enterprise domain. We identify and discuss the needs, challenges and architecture to 

incorporate ML microservices in such applications. Minerva’s design for optimal integration 

with legacy applications using microservices architecture leveraging lightweight infrastructure 

accelerates deploying ML models in such applications. 
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1. INTRODUCTION 
 

Enterprise SaaS applications are typically delivered as a service [1] to the client who need not 

worry about network, servers, operating systems, storage and data security. SaaS applications are 
broadly classified as general use and enterprise. The former involves general use software, such 

as Google Apps, and the latter specific enterprise applications, such as Oracle CX. Microservices 

are an effective way to decompose building large and complex systems into smaller sub-systems 
with these sub-systems interoperating via light weight (e.g., REST - representational state 

transfer) protocols. Machine learning sub-systems are increasingly important for SaaS 

applications like Oracle CX, Oracle CRM etc. due to the need to integrate intelligent decision-

making. Many SaaS applications were built a decade or two ago, on an older technology stack on 
top of legacy data centers. Typically, this stack involves running monolithic applications on a 

multi-tenant SaaS infrastructure [2] with a huge database (like Oracle RDBMS) at its core. 

Pooyan et al. [3] identified several general benefits of microservices like faster delivery, 
improved scalability, and greater autonomy, turning an idea on some product manager’s or other 

project member’s whiteboard into a feature running in production as quickly as possible. 

Typically, microservices are packaged and deployed in the cloud using lightweight container 
technologies [4], following industry proven DevOps practices [5] and supported by automated 

software delivery machinery. 
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The paper is organized as follows: Section 2 introduces the machine learning needs in enterprise 
SaaS applications, Section 3 discusses related work, Section 4 elaborates how Minerva addresses 

these challenges, Section 5 highlights the system architecture, Section 6 & 7 compare and 

differentiate Minerva platform with other platforms, Section 8 presents the trade-offs made while 

designing Minerva, Section 9 & 10 presents Minerva’s implementation and rollout in Oracle and 
finally Section 11 & 12 concludes the paper with future research directions. Table 1 reflects the 

nomenclature used in this paper. 

 
Table 1.  Nomenclature 

 

Term Description 

CRM Customer Relationship Management 

CX Customer Experience 

REST Representational State Transfer Protocol 

SaaS Software as a Service 

RDBMS Relational database Management System 

DevOps Development Operations 

CPU Central Processing Unit 

RAM Random Access Memory 

ML Machine Learning 

B2B Business to Business 

 

2. SAAS APPLICATION MACHINE LEARNING NEEDS 
 

Machine learning models are designed by data scientists on sample datasets extracted for testing 

and experimentation. Typically, model development involves a fair understanding of the 
underlying optimization and statistical algorithms. A variety of programming languages, like R, 

Python etc., can be used along with various open source libraries for implementation. The typical 

tech-stack for development of these models is different from the host SaaS application stack.  
 

The following additional requirements are not obvious, but they are crucial to implement machine 

learning in SaaS application. We highlight the technical requirements arising out of them. Section 

6 and 7 showcases how Minerva achieves these technical requirements and as well suits the 
business needs, while others fall short.  

 

2.1. Technical Requirements 
 

• The need for reusability of the ML sub-system to serve numerous and diverse models to the 

host apps. 
 

• The need for decentralized data governance and pre-processing to help with feature engineering 

required for machine learning models.  
  

• The need for scalability, both horizontally (more machines) and vertically (add. CPU, RAM 

etc.).  

 
• The need for real time or near real time (online) performance in predictions to serve 

intelligence in host applications.  

 
• The need to accommodate long batch/offline training.  
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• The need to secure the sensitive data exchange between the feature processing subsystem and 
the machine learning processing sub-system. 

• The need to build the ML microservice with the best of the breed modelling polyglot libraries in 

and independent of tech-stack of legacy system.  

 

2.2. Business Requirements 
 
Executives from SaaS product companies have established an aggressive 3 to 5 years horizon for 

cloud migration plans [6] for their customers. Some have an even longer sunset plan to stay 

competitive. Thus, companies like Oracle (and others) need an interim solution that fulfils the 

intelligence needs of traditional SaaS applications, especially in the B2B enterprise domain. 
Additionally, we capture the following business requirements that necessitates an innovative 

solution that is different from typical cloud machine learning solutions [7]: 

 
• The need to serve intelligence in numerous traditional SaaS applications (e.g. SAP, Oracle etc.) 

in a lightweight fashion without much impact to the underlying systems or infrastructure. This 

market is roughly $20B revenue annually.  
 

• The need to have ML “algorithm/model run near the data” as opposed to “move the data to 

algorithm/model”. This arises due to the legal rules of various states/countries  making it 

difficult for applications to migrate data outside their datacenters. 
 

• The need to have an “interim” machine learning solution that is compatible with “legacy” SaaS 

applications, at-least for some time to come due to delays and inertia in adopting recent 
computing cloud techniques [7]. 

 

In a traditional enterprise SaaS Application and/or suite the following requirements are of 
premium importance: independence of the microservices programming stack, reusability, 

lightweight ML platform resource needs, algorithm running in proximity to data and 

compatibility with existing architecture without much impact. 

 

3. RELATED WORK 
 

Machine learning microservices have evolved from leveraging virtualization environments [8] to 

containerized approaches [9]. Ignacio et al. [8] has adopted a Bring Your Own Learner in the 

FCUBE project where various machine learning predictive algorithms can be run in a virtual 
machine environment [10]. They employ a plug and play approach which is a basic tenet of our 

approach as well. However, they focus on ensemble models for predictive classifications 

problems. Additionally, this approach is an offline approach and cannot be employed by 
traditional SaaS applications. Our solution generalizes to any kind of machine learning model. 

Fundamentally, our Bring Your Own Model or Algorithm (BYOMOA) approach allows for 

immense flexibility in choice of model libraries employed. Secondly, we also treat the model 
building exercise as a black box where the modeler obeys an established abstract interface of 

predict and train with our machine learning microservice framework. Pasquale et al. [9] has 

extended the FCUBE approach to a cCUBE microservices framework with containerization of 

services and adding orchestrators to help manage the compute units. While, we adopt such 
containerizing and task management as well, we offload management of the machine learning 

and data jobs to either out-of-box orchestrators or to the host application that allow such 

orchestrations. Unlike cCUBE we relax the limitations by designing for any supervised, 
unsupervised or deep learning algorithms. Thus, we allow almost unlimited ML capabilities in 

traditional SaaS applications.  
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Recently industry has recognized these issues by developing various ML platforms [11], [12], 
[14], [15] for ML lifecycle management. We borrow and extend their capabilities, and, in our 

case, it became essential due to value we need to deliver to SaaS applications suite. Similar to 

Databrick’s MLFlow [11], we allow polyglot library capabilities by developing generic REST 

APIs that can use any ML library or algorithm. However, we offer a different 
deployment/microservices model by parcelling both model (M) and algorithm (A) in simpler 

project modules/files within container image instead of packaging models in complicated 

deployment repositories as in [11]. This allows for portability and enables wider “lift and shift 
strategy” that is the core value we deliver to SaaS application suites. Other recent ML platforms 

like Facebook’s FBLearner [12], Uber’s Michelangelo [13] and Google’s TFX [14] have tried to 

solve the problem but within their own ecosystem. We concur with Zaharia et al. [11] that this 
limits ML developers to specific algorithms and libraries, decreasing their ability to experiment, 

and limiting ML developers and not allowing them to use new libraries or models. 

Finally, the models have been traditionally integrated into products using hardcoded or embedded 

stacks. In the hardcoded approach the models are trained, and the model is captured as a 
mathematical or statistical function capable of being written directly into the host application 

during prediction process. In the embedded approach, the model is recoded into host application 

programming language. These two approaches suffer from the following deficiencies:  
 

• Slower development process due to sequential or near waterfall development. 

 
• Additional translation needed into the host application tech stack and/or programming 

language. 

 

• Limited number of modelling libraries available in the host programming stack. 
 

• Errors cropping up in the model translation efforts. 

 
• No reuse of the model or code by related products in the traditional SaaS application. 

 

4. ADDRESSING THE CHALLENGE 
 

In our approach we devise a machine learning (ML) microservice sub-system “framework” 
(Minerva) within the ecosystem of a suite of traditional “legacy” SaaS applications. To address 

the needs of connected intelligence in such applications, we establish well defined REST service 

contracts with the various sub-systems. Due to the varied nature of interactions amongst the sub-
systems we evolve the REST contracts into a “consumer contracts REST pattern” as suggested by 

Ian [15]. The machine learning model and/or its code is a black box that can be plugged into the 

Minerva by adopting well defined predict and train abstractions provided by the framework. To 

support monitoring and operations we allow for tiered logging interfaces that get ingested into the 
overall host application ecosystem by mounting a shared file system. Thus, we can adopt the 

same support operations to monitor the machine learning intelligence as the rest of the legacy 

ecosystem. A continuous deployment (CD) framework facilitates the agile development of 
Minerva parallel to the host application development. This eliminates a sequential development 

process and accelerates putting features into production. The cadence with data pre-processing 

jobs is orchestrated outside Minerva. These data jobs themselves can leverage database libraries 
already developed. Additionally, the very nature of independence of the microservices allows 

both the model and framework development in different programming languages and libraries 

than the “legacy” application ones. This adds to the flexibility in Minerva in choosing custom or 

advanced libraries for modelling. Organizationally, the microservice architecture allows a 
separate team to be responsible for this ML intelligence. This “engineering less” approach stems 

from the very conceptual adoption of ML microservices into the legacy development and 



Computer Science & Information Technology (CS & IT)                                   123 

 

deployment process. Another important contribution of our work is to allow for reuse and/or 
portability of the same machine learning model and/or algorithm code (A) by other related 

products (RP) in the parent suite organization. These products can now contribute (“lift and shift 

strategy”) to mutually beneficial ML algorithms or models, enabled by Minerva’s standard 

interfaces. These interfaces are served by a container that holds the model, its code (algorithm) 
and framework. The ease of adoption of Minerva in each RP is achieved by a separation of RP 

and framework configurations during deployment. An evolution of a given model is possible via 

a schema versioning in service payload contracts as evinced by Ian [15]. Another important 
contribution of the framework is the ability by the host applications to train and predict both 

online as well as offline. Finally, this containerized approach allows both vertical (CPU, RAM 

etc. of a node) and horizonal (spawning multiple nodes) scaling, albeit manually. 
 

5. SYSTEM ARCHITECTURE 
 

The system architecture and integrations are shown in Figure 1. The legacy application is built as 

several sub-systems: UI, DB, CORE, PLATFORM etc. in a datacenter. The ML microservices is 
a docker container (Minerva) implemented as per the proposal highlighted in section 4. Minerva 

container has three layers: core, abstraction and app. The Minerva core layer handles interaction 

with other systems, process management within the container, concurrency controls, security 
mechanisms and configurations. The Minerva abstraction stub wraps the algorithm/model, 

handles dynamic loading of projects (apps), versioning, exceptions  and call-backs. The Minerva 

App layer implements the abstractions and codes the model, algorithm and logic using the best of 

breed ML libraries.  
 

 
 

Figure 1.  System architecture of ML enabled SaaS application 

 

Minerva interacts with the legacy sub-systems like ui, core etc. for predictions. The training 
request can be orchestrated when the data is made ready for machine learning by the data 

processing unit. An orchestrator can be part of the legacy application, but that can also be pulled 

outside the application if needed. The data needed for ML is extracted and pre-processed by the 
data processing unit. The legacy application has a shared storage space that the ML microservice 

can leverage for saving and logging. The ML microservice is self-contained with its own meta-

data info. 
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6. PLATFORM COMPARISON 
 
Minerva platform is lightweight and primarily focuses on model/algorithm lift and shift 

enablement using a diverse set of ML libraries (TensorFlow, Pytorch, Keras, Sklearn etc.). In 

contrast, Kubeflow can serve fewer ML libraries (notably TensorFlow and Pytorch) and thus is 

not completely polyglot with respect to the choice of ML open source libraries. MLflow though 
polyglot and similar, has other design limitations. 
 

Table 2.  Comparison of Minerva with various platforms 

 

Feature Minerva MLFlow Kubeflow 

Job Tracking X X X 

Resources/ML Monitoring   X 

Standard docker packaging  X X  

Dynamic endpoints X   

API Standardization  X   

Easy lift and shift of Algorithm  X X  

Easy lift and shift of model X X X 

Microservices architecture 

(FaaS - Function as a Service) 

X X  

Real Time Serving (REST)  X X X 

Batch processing (train) X X X 

Library Polyglot X X  

ML Pipelines   X 

Model Visualization   X 

Experimentation support  X X 

Open Framework X  X 

Model versioning X   

Concurrency control X   

 

Secondly, Minerva focuses on ease of endpoint configurability which helps customizing the 

multitude of consumer driven REST APIs to interface with the various legacy application 
subsystems. These endpoint APIs are themselves standardized (for training) or templatized (for 

predictions) with version as a key attribute. Presumably, due to polyglot capabilities, these 

different models can be built using latest and greatest ML libraries in evolving versions, making 
avail of latest research. Thus, Minerva helps invoking multiple model revisions and swapping 

them as necessary by legacy application. MLflow has strengths in ML lifecycle management but 

offers little to help integrate with SaaS applications, especially with respect to API 
configurability, versioning or standardization.  Although MLFlow has reusable projects, Minerva 

achieves algorithm lift and shift with simple modifications to pluggable single (or few) python 

project (app) files(s)/modules which are invoked dynamically by the framework. Thus, Minerva’s 

approach of algorithm reuse and customization is different from MLFlow’s heavy duty approach 
of external algorithm development involving separate and newer repositories conforming to 

complex templates. Kubeflow has a nicer set of complementary off-the-shelf capabilities like 

pipelines, scalability etc. which when supplemented to Minerva platform will enhance the overall 
robustness and maintenance of ML artifacts in SaaS applications. This integration with Kubeflow 

is illustrated in section 11 and earmarked for future studies of Minerva in OCI (Oracle Cloud 

Infrastructure) [16] platform. Finally, while scalability is handled in Minerva by using more and 

bigger containers, albeit replicating them manually, MLFlow’s techniques of Spark [17] based 
compute and scalability does not bode well in legacy applications without adding elaborate 
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infrastructure. We find that scalability requirements in legacy applications is not a severe 
requirement, considering the typical datasets in enterprise software.  

 

7. VALUE DELIVERED TO LEGACY APPLICATIONS 
 

Table 3 shows the pros and cons of Minerva adoption in legacy applications when compared to 

MLFLow and Kubeflow. Minerva optimally integrates with legacy subsystems, allows for 

democratization of algorithm development in a suite of products, leverages light weight 
infrastructure and is compatible with legacy architectures. We discuss these tenets below with 

comparisons.  
 

7.1. Democratization 
 
Minerva is designed for optimal portability of algorithms in a suite of applications leveraging the 

microservices architecture, standardizing APIs and enabling lift and shift mechanisms. While 

MLflow comes close, it is primarily designed for ML lifecycle management. It doesn’t address 
techniques to simplify lift and shift needs of algorithms/models across applications in a suite. For 

this, MLFlow relies on building and importing a new code repository, while Minerva achieves it 

by easily modifying the algorithm pluggable project (app) file(s) in a docker image. Thus, the 
ingestion of a new algorithm code is lightweight and also seamless due to the dynamic loading of 

project modules by framework, thereby minimizing the time to customize algorithms. Thus, 

Minerva allows for democratization of model/algorithm development by several teams in the 

organization. However, MLFLow due to lack of configurability capabilities, makes this difficult. 
Secondly, one can directly import pretrained models into the new application in a suite, and thus 

need not train a new model per se for the new application in the suite. In all, Minerva is designed 

for easier lift and shift strategy which is a key enabler for democratization of algorithm 
development in an application suite.  
 

Table 3.  Pros and Cons of Minerva platform in legacy application suite 

 

Feature Minerva MLFlow Kubeflow 

Decentralized 

Microservices Architecture 

X X X 

Easier Integrations X   

Lightweight Infrastructure X   

Scalable Training  X X 

Legacy Compatibility X X  

ML Democratization  X   
 

7.2. Integration 
 
Integration is another differentiator in Minerva. With its standardized and self-documenting 

swagger end points [19]  it can add, modify or delete them at will. Thus, design of multitude of 

consumer driven payloads [11] with various legacy application subsystems becomes standard and 

easy. Additionally, Minerva parses and validates payloads dynamically and supports API 
versioning and identifiers that can be used to respond back to calling subsystems. MLflow 

doesn’t offer such configurability and hence is not easier to adopt or adapt when integrating with 

the many legacy application subsystems.  
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7.3. Compatibility 

 
Kubeflow [18] can serve some needs of SaaS applications when they are migrated to cloud 
infrastructure due to its deep roots in kubernetes, a virtual cloud operation system. But, Kubeflow 

cannot be readily accessed or ingested by legacy applications as they will need an upgrade to the 

newer cloud infrastructure.  Minerva not only works within the existing infrastructure with 

minimal computing requirements, but also does not need to move the data out of the legacy 
application’s datacenter. It is compatible with legacy architecture and can easily integrate into 

them due microservices architecture.  

 
Finally, the industry has variety of cloud ML platforms like Amazon AWS [20], Microsoft Azure 

[21] and Google Cloud [22]. They have ML Microservices enabled via REST end points, but the 

legacy applications cannot readily leverage them due to unwillingness to export data out and 
transfer into the respective cloud ecosystems. Additionally, the legacy applications may not 

migrate to these cloud platforms for some time to come as pointed in Section 2. 

In all, configurability, containerization, lightweight infrastructure and standardization make 

Minerva quite portable as compared to MLFlow and Kubeflow. 
 

8. DESIGN TRADE-OFFS 
 

Minerva doesn’t offer elastic scalability as yet, as we have traded off due to the inherent smaller 
sizes of datasets in enterprise SaaS applications, especially in enterprise domain. In contrast, 

Minerva relies on lighter infrastructure, and in order to alleviate scalability issues, it has 

concurrency controls via throttling mechanisms for every ML project. 

 
Minerva has little to no support for ML pipelines. It has a rudimentary orchestrator leveraging 

some built-in support in Oracle CX products. This simpler approach was enough to support the 

existing workflows that have been built so far. However, Kubeflow [18] has better support for 
ML pipelines which Minerva could leverage as in Section 11 as and when the supported 

workflows become increasingly complex.  

 
Minerva has primarily been designed to address deficiencies and delays in deploying ML. Hence, 

it leverages experimentation done outside the platform. With the addition of Kubefow’s 

experimentation platform, Minerva could become more complete. 

  
Finally, model explanation, visualization and performance monitoring are a needed features that 

Minerva lacks.  This trade off was made due to build vs buy decisioning. Observing Kubeflow’s 

capabilities there was no need to build these. Section 11 highlights that this along with other 
features can be brought into the Minerva with a mutually symbiotic integrations with one or more 

such platforms.  

  

9. CASE STUDY 
 
Minerva was successfully adopted for at-least four ML projects (apps) to build connected 

intelligence in Oracle CX product suite. The first ML project  (app) was successfully 

implemented in one Oracle calendar release (three month’s timeframe), the next three ML 
projects (apps) were adopted and integrated in the next release (subsequent three months). Thus, 

deploying ML intelligence features in production accelerated three times compared to traditional 

approaches with similar resources.  

 



Computer Science & Information Technology (CS & IT)                                   127 

 

Consumer driven payloads form the foundation of the interaction with the sub-systems. We 
illustrate the case study with a few important ones. Figure 2 illustrates the design and 

implementation of a generic train payload for batch training any model. The above example 

specifically trains Customer Lifetime Value (CLV) model within CX product suite. Various job 

tracking info is passed in top section of the json payload. The framework captures job statuses, 
which help in monitoring and debugging issues. Also, a polling API exposes the statuses of the 

ML jobs to the orchestrator. The training happens at a pre-determined frequency per account 

(a.k.a customer) triggered by the host application using an orchestrator. The data is made 
available by the data processing unit at CLV_MODEL_INPUT table. The CLV algorithm will 

build and store the ML model in ML_MODEL_STORED table in a database. The database 

ensured the model security, versioning and fault tolerance. An asynchronous predict can be 
triggered similarly by changing action type to predict. This generates the results in 

CLV_MODEL_OUTPUT for each account. The UI then displays the results to the end 

customers.  
 

While, above use case has batch training and batch predictions, Minerva is not limited to these 
cases only. It can do online predictions, as well as hybrid predictions, where acknowledgements 

are synchronous and final predictions are batched (asynchronous) and reported in a call-back. 

Figure 3 illustrates an online prediction of a new subject line (text) for consumption by the 
Ad/Message designer in CX product. This new endpoint can be easily created by swagger configs 

and additionally processing of its data attribute is handled by the downstream project (app) 

code/algorithm. Framework parses the remaining attributes to handle the versioning of APIs and 

synchronous replies within a required SLA (Service level agreement). 
 

 
 

Figure 2. Standardized payload to train ML model in Minerva 
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Figure 3. Online payload to predict subject line in Minerva 

 

10. ORGANIZATION PERSPECTIVE 
 

Organizationally, Minerva architecture allows for a separate data science(s) team to be 

responsible for crafting the algorithm, platform and the model. Not only one team, but several 
ML teams can contribute to the modelling activity, thus democratizing machine learning 

development. The infrastructure needed to run Minerva can be owned by separate engineering 

teams. This allows for data scientists to be responsible primarily for modelling and building ML 
pipelines. The data scientists can monitor their own pipelines and evaluate their own models. 

Additionally, the data science team can build a blueprint that serves as a deployment framework 

for engineering to deploy Minerva in many applications in a suite. This clever separation of 

responsibilities between the engineering and data scientists leverages their respective strengths. In 
many cases, international deployment teams can be made responsible for rolling out the blueprint 

to production further adding cost benefits. 
 

11. FUTURE WORK 
 

SOA (service-oriented architecture) [26] have continuously evolved since the initial days, with 

their adoption growing in cloud eco-systems. Minerva can work seamlessly in a new cloud 

infrastructure when applications migrate, especially Oracle cloud infrastructure (OCI) [23]. 
Notably, one can enable several other features along with Minerva platform in OCI. Specifically, 

OCI datascience module has capabilities to scale Minerva using Oracle Machine learning (OML) 

[24] which leverages compute power of the Oracle Autonomous database [25]. Additionally, 
more extensions to Minerva are possible due to native capabilities in OCI like Kubernetes [25] 

that can help build capabilities like dashboard monitoring, orchestration and account level 

debugging. Moreover, Minerva can draw strengths from OCI’s Kubernetes pipeline engine - 

Kubeflow [19], its elastic machine scaling, its GPU compute power and its native load balancing 
capabilities. When the legacy applications migrate to cloud infrastructure (OCI or similar), one 

can leverage Minerva in an even better form. First version of Minerva rides out the interim period 

when legacy applications can’t migrate to the cloud infrastructure. 
 

12. CONCLUSION 
 

Although microservices have conceptually existed since the days of SOA (service-oriented 
architecture), they have recently been adopted by various product organizations to reorganize 

monolithic SaaS applications. ML intelligence is a recent initiative to make these applications 

smart. Traditionally, the models built by data scientists have been integrated into products either 
using offline or embedded methods. We suggest a portable BYOMOA ML framework to allow 

for modeling flexibility, reusable ML use cases, agile development, tech-stack independence & 
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faster deployments. This configurable and reusable Minerva framework is suited for legacy 
applications which can neither immediately migrate to cloud infrastructures nor can send their 

data outside their legacy datacenters for consumption by recent cloud ML platforms.   
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